J/MNRAS/502/4009   Sub-damped Lyman α systems in XQ-100 II   (Berg+, 2021)

Sub-damped Lyman α systems in the XQ-100 survey - II. Chemical evolution at 2.4=<z=<4.3. Berg T.A.M., Fumagalli M., D'Odorico V., Ellison S.L., Lopez S., Becker G.D., Christensen L., Cupani G., Denney K.D., Sanchez-Ramirez R., Worseck G. <Mon. Not. R. Astron. Soc., 502, 4009-4025 (2021)> =2021MNRAS.502.4009B 2021MNRAS.502.4009B (SIMBAD/NED BibCode)
ADC_Keywords: QSOs ; Redshifts ; Abundances, peculiar ; Spectra, optical Keywords: galaxies: high-redshift - galaxies: ISM - quasars: absorption lines Abstract: We present the measured gas-phase metal column densities in 155 sub-damped Ly α systems (subDLAs) with the aim to investigate the contribution of subDLAs to the chemical evolution of the Universe. The sample was identified within the absorber-blind XQ-100 quasar spectroscopic survey over the redshift range 2.4=<zabs=<4.3. Using all available column densities of the ionic species investigated (mainly CIV, SiII, MgII, SiIV, AlII, FeII, CII, and OI; in order of decreasing detection frequency), we estimate the ionization-corrected gas-phase metallicity of each system using Markov chain Monte Carlo techniques to explore a large grid of CLOUDY ionization models. Without accounting for ionization and dust depletion effects, we find that the HI-weighted gas-phase metallicity evolution of subDLAs is consistent with damped Ly α systems (DLAs). When ionization corrections are included, subDLAs are systematically more metal poor than DLAs (between ∼0.5σ and ∼3σ significance) by up to ∼1.0dex over the redshift range 3=<zabs=<4.3. The correlation of gas phase [Si/Fe] with metallicity in subDLAs appears to be consistent with that of DLAs, suggesting that the two classes of absorbers have a similar relative dust depletion pattern. As previously seen for Lyman limit systems, the gas phase [C/O] in subDLAs remains constantly solar for all metallicities indicating that both subDLAs and Lyman limit systems could trace carbon-rich ejecta, potentially in circumgalactic environments. Description: The XQ-100 Legacy Survey (Lopez et al. 2016A&A...594A..91L 2016A&A...594A..91L) observed 100 QSO sightlines between redshifts 3.5=<zem=<4.5 with the X-Shooter Spectrograph (Vernet et al. 2011A&A...536A.105V 2011A&A...536A.105V) on the Very Large Telescope (VLT). Each QSO was observed for ∼0.5 or ∼1h based on the QSO's brightness; providing a median signal-to-noise ratio of ∼30 per pixel. As the QSOs were purposefully chosen to be blind to any intervening absorption line systems, the XQ-100 data set provides a randomly selected sample of subDLAs and DLAs to assess their cosmological contribution to the evolution of neutral gas at redshifts modestly probed in past surveys (Sanchez-Ramirez et al. 2016MNRAS.456.4488S 2016MNRAS.456.4488S, Cat. J/MNRAS/456/4488; Berg et al. 2016MNRAS.463.3021B 2016MNRAS.463.3021B, 2017MNRAS.464L..56B 2017MNRAS.464L..56B, Cat. J/MNRAS/464/L56, 2019MNRAS.488.4356B 2019MNRAS.488.4356B; Christensen et al. 2017A&A...608A..84C 2017A&A...608A..84C). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 84 5041 XQ-100 subDLA metal column densities table3.dat 86 155 XQ-100 subDLA metallicities -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name of the quasar sightline (JHHMM+DDMM) 12- 18 F7.5 --- zabs Redshift of the absorber 20- 24 A5 --- Ion Ionic species 26- 29 I4 0.1nm lambda ? Wavelength of the line 31- 34 I4 km/s vmin ? Starting velocity of the AODM integration 36- 39 I4 km/s vmax ? End velocity of the AODM integration 41- 45 F5.2 [cm-2] logN ? Logarithm of the column density for the absorption line 47- 52 F6.2 [cm-2] e_logN ? Error on logN 54- 55 I2 --- f_logN ? Flag indicating whether the absorption is adopted for logN (1) 57- 61 F5.2 [cm-2] logNadop ? Logarithm of the adopted column density 63- 66 F4.2 [cm-2] e_logNadop ? Error on logNadop 68 I1 --- f_logNadop ? Flag indicating whether the absorption is adopted for logNadop (1) 70- 74 F5.2 [cm-2] logNadopIC ? Logarithm of the adopted column density with ionization correction 76- 79 F4.2 [cm-2] e_logNadopIC ? Lower error on logNadopIC 81- 84 F4.2 [cm-2] E_logNadopIC ? Upper error on logNadopIC -------------------------------------------------------------------------------- Note (1): Flag as follows: 1 = absorption adopted 2 = absorption saturated or lower limit 4 = absorption undetected 8 = absorption blended -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name of the quasar sightline (JHHMM+DDMM) 12- 18 F7.5 --- zabs Redshift of the absorber 20- 24 F5.2 [cm-2] logNHI Logarithm of the HI column density 26- 29 F4.2 [cm-2] e_logNHI Error on logNHI 31 A1 --- l_[M/H] Limit flag on [M/H] 33- 37 F5.2 [-] [M/H] Total gas-phase metallicity of the system 39- 42 F4.2 [-] e_[M/H] ? Error on [M/H] 44- 47 A4 --- Ion Ion used to compute [M/H] 49- 53 F5.2 [-] [M/H]IC Total gas-phase metallicity of the system with ionization correction 55- 59 F5.2 [-] b_[M/H]IC Lower bound on [M/H]IC 61- 65 F5.2 [-] B_[M/H]IC Upper bound on [M/H]IC 67- 71 F5.2 [cm-2] lognH Logarithm of the gas density nH 73- 77 F5.2 [cm-2] b_lognH Lower bound on lognH 79- 83 F5.2 [cm-2] B_lognH Upper bound on lognH 85- 86 A2 --- Sample Sample name (1) -------------------------------------------------------------------------------- Note (1): We split the XQ-100 subDLA absorbers into two samples: the full catalogue of subDLAs (abbreviated FS) and those with at least one confirmed detection of a metal species from the method outlined in Section 2.2 (referred to as the metal-selected sample, MS) -------------------------------------------------------------------------------- History: From electronic version of the journal References: Berg et al., Paper I 2019MNRAS.488.4356B 2019MNRAS.488.4356B
(End) Ana Fiallos [CDS] 30-Oct-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line