J/MNRAS/502/4743 Census of circumgalactic MgII at redshift z=<0.5 (Huang+, 2021)

A complete census of circumgalactic Mg II at redshift z=<0.5. Huang Y.-H., Chen H.-W., Shectman S.A., Johnson S.D., Zahedy F.S., Helsby J.E., Gauthier J.-R., Thompson I.B. <Mon. Not. R. Astron. Soc., 502, 4743-4761 (2021)> =2021MNRAS.502.4743H 2021MNRAS.502.4743H (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies ; QSOs ; Redshifts ; Equivalent widths ; Spectroscopy ; Ultraviolet ; Optical Keywords: surveys - galaxies: formation - galaxies: haloes - intergalactic medium - quasars: absorption lines Abstract: This paper presents a survey of MgII absorbing gas in the vicinity of 380 random galaxies, using 156 background quasi-stellar objects (QSOs) as absorption-line probes. The sample comprises 211 isolated (73 quiescent and 138 star-forming galaxies) and 43 non-isolated galaxies with sensitive constraints for both MgII absorption and Hα emission. The projected distances span a range from d=9 to 497kpc, redshifts of the galaxies range from z=0.10 to 0.48, and rest-frame absolute B-band magnitudes range from MB=-16.7 to -22.8. Our analysis shows that the rest-frame equivalent width of MgII, Wr(2796), depends on halo radius (Rh), B-band luminosity(LB), and stellar mass (Mstar) of the host galaxies, and declines steeply with increasing d for isolated, star-forming galaxies. At the same time, Wr(2796) exhibits no clear trend for either isolated, quiescent galaxies or non-isolated galaxies. In addition, the covering fraction of MgII absorbing gas <κ> is high with <κ≫=60 per cent at <40kpc for isolated galaxies and declines rapidly to <κ≳0 at d≥100 kpc. Within the gaseous radius, the incidence of MgII gas depends sensitively on both Mstar and the specific star formation rate inferred from Hα. Different from what is known for massive quiescent haloes, the observed velocity dispersion of MgII absorbing gas around star-forming galaxies is consistent with expectations from virial motion, which constrains individual clump mass to mcl≳105M and cool gas accretion rate of ∼0.7-2M/yr. Finally, we find no strong azimuthal dependence of MgII absorption for either star-forming or quiescent galaxies. Our results demonstrate that multiple parameters affect the properties of gaseous haloes around galaxies and highlight the need of a homogeneous, absorption-blind sample for establishing a holistic description of chemically enriched gas in the circumgalactic space. Description: To investigate the correlation between galaxy properties and MgII absorbing gas at small projected distances, we need to obtain spectroscopic data of both galaxies and QSO absorbers along common sightlines. We utilize the MagE (Marshall et al. 2008SPIE.7014E..54M 2008SPIE.7014E..54M) on the Magellan Clay Telescope to conduct a survey of MgII absorbers at z<0.4. The high UV throughput of MagE from λ=3100Å enables searches of MgII absorbers at redshift as low as 0.11. Briefly, the QSO and galaxy pairs are selected from the SDSS DR6 catalogues (Adelman-McCarthy et al. 2008ApJS..175..297A 2008ApJS..175..297A, Cat. II/282). To maximize the efficiency of searching MgII absorbers, we consider galaxies at photometric redshifts of zphot=<0.4 that have background QSOs in close projected distance d<Rgas. Rgas=130kpc is the distinct boundary found by Chen & Tinker (2008ApJ...687..745C 2008ApJ...687..745C) using 23 galaxy-QSO pairs at intermediate redshifts of z∼0.4, beyond which no MgII absorbers are found. To establish a physical connection between galaxies and MgII absorbing systems along nearby QSO sightlines, it is essential to have medium to high resolution spectra to obtain precise and accurate redshift measurements of these galaxies. We have obtained optical spectra of 218 galaxies that satisfy the criteria described above using the MagE Spectrograph (Marshall et al. 2008SPIE.7014E..54M 2008SPIE.7014E..54M) at the Las Campanas Observatory and the Double Imaging Spectrograph (DIS; Lupton 1995) on the 3.5-m telescope at the Apache Point Observatory. Details about the spectroscopic observation setups and data reduction are presented in Chen et al. (2010ApJ...714.1521C 2010ApJ...714.1521C, Cat. J/ApJ/714/1521). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 91 380 Summary of Faint Galaxy Spectroscopy table2.dat 82 156 Summary of the MagE spectroscopic observations of SDSS QSOs table3a.dat 106 211 Isolated galaxies and absorption systems table3b.dat 106 71 Non-isolated galaxies and absorption systems -------------------------------------------------------------------------------- See also: II/294 : The SDSS Photometric Catalog, Release 7 (Adelman-McCarthy+, 2009) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 24 A24 --- Name Galaxy name (SDSSJHHMMSS.ss+DDMMSS.ss) 26- 27 I2 h RAh Right ascension (J2000) 29- 30 I2 min RAm Right ascension (J2000) 32- 36 F5.2 s RAs Right ascension (J2000) 38 A1 --- DE- Declination sign (J2000) 39- 40 I2 deg DEd Declination (J2000) 42- 43 I2 arcmin DEm Declination (J2000) 45- 49 F5.2 arcsec DEs Declination (J2000) 51- 54 F4.2 --- zphot ? Photometric redshift 56- 59 F4.2 --- e_zphot ? Error on zphot 61- 64 F4.1 mag rmag r-band magnitude 66- 69 A4 --- Inst Instrument used for the observations (1) 71- 81 A11 s ExpTime Exposure time 83- 91 A9 "Y:M:D" Date UT observation date -------------------------------------------------------------------------------- Note (1): Instrument as follows: DIS = Double Imaging Spectrograph (DIS; Lupton 1995) on the 3.5-m telescope at the Apache Point Observatory MagE = MagE Spectrograph (Marshall et al. 2008SPIE.7014E..54M 2008SPIE.7014E..54M) at the Las Campanas Observatory SDSS = SDSS DR14 (Abolfathi et al. 2018ApJS..235...42A 2018ApJS..235...42A) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 24 A24 --- Name QSO name (SDSSJHHMMSS.ss+DDMMSS.ss) 26- 27 I2 h RAh Right ascension (J2000) 29- 30 I2 min RAm Right ascension (J2000) 32- 36 F5.2 s RAs Right ascension (J2000) 38 A1 --- DE- Declination sign (J2000) 39- 40 I2 deg DEd Declination (J2000) 42- 43 I2 arcmin DEm Declination (J2000) 45- 49 F5.2 arcsec DEs Declination (J2000) 51- 54 F4.2 --- zQSO Spectroscopic redshift of the QSO 56- 60 F5.2 mag umag u-band magnitude 62- 72 A11 s ExpTime Exposure time 74- 82 A9 --- Date UT observation date -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3[ab].dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 24 A24 --- Name Galaxy name (SDSSJHHMMSS.ss+DDMMSS.ss) 26- 31 F6.1 arcsec dRA Offset in right ascension of the MgII absorber 33- 38 F6.1 arcsec dDE Offset in declination of the MgII absorber 40- 45 F6.4 --- zgal Galaxy redshift 47- 51 F5.1 kpc Dist Distance 53- 57 F5.2 mag rmag r-band magnitude 59- 64 F6.2 mag BMAG Rest-frame absolute B-band magnitude 66- 69 F4.1 [Msun] logMass Logarithm of the stellar mass 71- 75 F5.1 kpc Rh Halo radius 77 A1 --- l_EWHa Limit flag on EWHa 79- 83 F5.1 0.1nm EWHa ? Hα equivalent width 85- 87 F3.1 0.1nm e_EWHa ? Error on EWHa 89- 94 F6.4 --- zabs ? Redshift of the MgII absorber 96 A1 --- l_W2796 Limit flag on W2796 98-101 F4.2 0.1nm W2796 ? MgII λ2796 equivalent width 103-106 F4.2 0.1nm e_W2796 ? Error on W2796 -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Ana Fiallos [CDS] 31-Oct-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line