J/MNRAS/503/4601      ALMA-IRDC from cloud to core scales        (Barnes+, 2021)
ALMA-IRDC: dense gas mass distribution from cloud to core scales.
    Barnes A.T., Henshaw J.D., Fontani F., Pineda J.E., Cosentino G., Tan J.C.,
    Caselli P., Jimenez-serra I., Law C.Y., Avison A., Bigiel F., Feng S.,
    Kong S., Longmore S.N., Moser L., Parker R.J., Sanchez-monge A., Wang K.
   <Mon. Not. R. Astron. Soc., 503, 4601-4626 (2021)>
   =2021MNRAS.503.4601B 2021MNRAS.503.4601B    (SIMBAD/NED BibCode)
ADC_Keywords: Infrared sources; Millimetric/submm sources; Molecular clouds;
              Photometry, millimetric/submm; Star Forming Region; Milky Way 
Keywords: stars: formation - stars: massive - ISM: clouds
Abstract:
    Infrared dark clouds (IRDCs) are potential hosts of the elusive early
    phases of high mass star formation (HMSF). Here, we conduct an
    in-depth analysis of the fragmentation properties of a sample of 10
    IRDCs, which have been highlighted as some of the best candidates to
    study HMSF within the Milky Way. To do so, we have obtained a set of
    large mosaics covering these IRDCs with Atacama Large
    Millimeter/submillimeter Array (ALMA) at Band 3 (or 3 mm). These
    observations have a high angular resolution (∼3 arcsec;
    ∼0.05 pc), and high continuum and spectral line sensitivity
    (∼0.15 mJy/beam and ∼0.2 K per 0.1 km/s^ channel at
    the N2H+ (1 - 0) transition). From the dust continuum emission, we
    identify 96 cores ranging from low to high mass (M = 3.4-50.9
    M☉) that are gravitationally bound (αvir = 0.3-1.3) and
    which would require magnetic field strengths of B = 0.3-1.0 mG to be
    in virial equilibrium. We combine these results with a homogenized
    catalogue of literature cores to recover the hierarchical structure
    within these clouds over four orders of magnitude in spatial scale
    (0.01-10 pc). Using supplementary observations at an even higher
    angular resolution, we find that the smallest fragments (<0.02 pc)
    within this hierarchy do not currently have the mass and-or the
    density required to form high-mass stars. None the less, the new ALMA
    observations presented in this paper have facilitated the
    identification of 19 (6 quiescent and 13 star-forming) cores that
    retain > 16 M☉ without further fragmentation. These high-mass
    cores contain trans-sonic non-thermal motions, are kinematically
    sub-virial, and require moderate magnetic field strengths for support
    against collapse. The identification of these potential sites of HMSF
    represents a key step in allowing us to test the predictions from
    high-mass star and cluster formation theories.
Description:
    To investigate the dense gas properties within the IRDC sample, we
    have acquired high-angular resolution dust continuum and molecular
    line observations with ALMA as part of the projects: 2017.1.00687.S
    and 2018.1.00850.S (PI: A.T. Barnes). The observations used the Band 3
    receiver, which was configured to obtain high spectral resolution
    observations (0.1 km/s or 30.518 kHz) of N2H+ (1-0) centred 
    at ∼93 GHz, and a broad continuum bandwidth of ∼4 GHz.
    Complementary observations were made in the C43-1 12 m array
    configuration (baselines of 15-314 m) and 7 m (ACA) array
    (baselines of 8-48 m).
    In order to identify clump, core and core-fragmented structures, we
    analyse these 10 clouds samples with the dendrogram analysis of the
    core ID and name, the host cloud, the centre RA and Dec (see section
    3). These methods were applied on 3mm dust continuum emission maps, 12
    and 7m array continuum maps, N2H+ (1-0) integrated intensity maps.
    Therefore these maps analysis give us integrated continuum fluxes,
    lines intensities and effectives radius of cores cloud and underlying
    structures. As a result, it allows us to compute a complete set of
    observational and physical properties of the core population as
    presented in the tablea12.dat.
    For the purpose of testing our results, we aim to make a comparison
    between the properties of the cores determined in this section to
    those presented within the literature. Thus, we include and compute
    properties of a large sample of cores and clumps from the literature
    that also covers our 10 clouds sample as we show in the tablea3.dat.
    We identify 96 cores across the 10 clouds within the ALMA continuum
    maps which we compute properties such as their masses. Finally, we
    study the phases of high mass star formation by an in-depth analysis
    of the hierarchical structure present within these molecular clouds,
    and assess the high-mass star-forming potential across fragmentation
    scales from clouds (∼1 pc), to clumps (∼0.5 pc), to cores
    (∼0.1 pc), and finally to core fragments (∼0.01 pc) (see
    conclusion section).
File Summary:
--------------------------------------------------------------------------------
 FileName      Lrecl  Records   Explanations
--------------------------------------------------------------------------------
ReadMe           80         .   This file
tablea12.dat    753        96   Observational properties of the core population
tablea3.dat     166       430   Properties of the homogenized
                                literature core sample
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea12.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label         Explanations
--------------------------------------------------------------------------------
   1-  2  I2    ---     ID            Core cloud ID   (ID)
   4- 11  A8    ---     Core          Core cloud name, ANcNN (Name)
  13- 18  A6    ---     Cloud         Host infrared dark cloud name, cloudN,
                                      [BT2009] N in Simbad (Cloud)
  20- 37 F18.14 deg     RAdeg         Right ascension of the core center (J2000)
                                      (RA_cen)
  40- 59 F20.16 deg     DEdeg         Declination of the core center (J2000)
                                      (Dec_cen)
  61- 78 F18.16 arcsec  Reff          Effective radius (radius_eff)
  80- 99 F20.16 arcsec2 AreaExact     Exact area defined by π*Reff2
                                      (AreaExact)
 102-120 F19.16 arcsec2 AreaEllipse   Core cloud ellipse area computed from
                                      major_sigma, minor_sigma and
                                      position_angle (AreaEllipse)
 123-140 F18.16 arcsec  majorSigma    parameter linked to semi-major axis of the
                                      Ellipse area parameter AreaEllipse
                                      (majorSigma)
 142-160 F19.17 arcsec  minorSigma    Parameter linked to the semi-minor axis of
                                      the Ellipse area parameter AreaEllipse
                                      (minorSigma)
 163-182 F20.15 deg     PA            [] Position angle defining the Core cloud
                                      ellipse inclination (PositionAngle)
 184-205 F22.20 Jy      Sv            The total continuum flux density (Sv)
 207-228 E22.20 Jy      Svb           The background-subtracted flux density
                                      (Svb)
 230-251 F22.20 Jy      Ivmax         The peak continuum intensity from Sv
                                      (Ivmax)
 253-270 F18.16 K       Tmax          Temperature (Tmax) (1)
 272-289 F18.15 km/s    v0            Centroid velocity (v0) (1)
 291-309 F19.17 km/s  e_v0            velocity dispersion (sigmav) (1)
 311-314  A4    ---     MMcore        Millimetre core region label (MM) (2)
     316  I1    ---   f_SF            [0/1] Binary number 0 or 1 (SF) (3)
     318  A1    ---     SF            [y/n] Yes or No (SF)
 320-325  F6.1  pc      Distance      Core cloud distance in parsec units
                                      (Distance_parsec)
 327-346 F20.18 pc      Reffpc        Effective radius in untis of parsecs
                                      (Reff)
 348-366 F19.17 pc      Smin          The minimum separation or nearest
                                      neighbour distance (Smin)
 368-385 F18.15 K       Tdust         The mean dust temperature (Tdust)
 387-407 F21.16 Msun    M             The mass determined using the mean dust
                                      temperature (M)
 409-430 F22.17 Msun    Mb            The background-subtracted mass using
                                      the mean dust temperature (Mb)
 432-452 F21.16 Msun    M18K          The mass determined using a constant
                                      temperature of 18K (M18K)
 454-475 F22.17 Msun    Mb18K         The background-subtracted mass using a
                                      constant temperature of 18K (Mb18K)
 477-496 F20.17 Msun    Mext          ? The extinction mass (Mext) (4)
 498-510  F13.6 uJy     S70um         ? The flux density at 70um (S70um) (5)
 512-529 F18.15 K       T70um         ? Estimated temperature associated
                                      to S70um flux density (T70um)
 531-549 F19.16 Msun    M70um         ? The mass estimates using a temperature
                                      determined from 70 um emission (M70um)
 551-569 F19.11 cm-3    nH2           The mean density of H2 into the core
                                      cloud (nH2)
 571-590 F20.12 cm-3    nH2bgsub      The background-subtracted mean density
                                      (nH2_bgsub)
 592-611 F20.18 Myr     tff           the free-fall time (tff)
 613-632 F20.18 Myr     tffbgsub      The background-subtracted free-fall time
                                      (tff_bgsub)
 634-652 F19.17 ---     alphavir      The virial parameter (αvir)
 654-673 F20.17 ---     alphavirb     The background-subtracted virial paramete
                                      (alphavirb)
 675-693 F19.17 km/s    sigmavrsub    The residual velocity substracted
                                      (sigmavelressub)
 695-715 F21.19 km/s    sigmaNT       ? The non-thermal velocity dispersion
                                      (sigmaNT)
 716-733 F18.16 ---     Machvrsub     ? The residual sonic substracted
                                      Mach number (Mach_velressub)
 735-753 F19.17 ---     Machs         ? The sonic non thermal Mach number
                                      (Machs_nonthermal)
--------------------------------------------------------------------------------
Note (1): The results of the N2H+ Gaussian fits of peak brightness
          (See the dynamical properties section 3.3).
Note (2): We show the millimetre (MM) core in which each core is contained
          (Rathborne et al.2006ApJ...641..389R, Cat. J/ApJ/641/389).
Note (3): If the core contains an embedded (Spitzer or Herschel 70 um) infrared
           point source.
Note (4): The mass determined from the near- and mid- infrared extinction maps
          (Mext; Kainulainen & Tan 2013A&A...549A..53K 2013A&A...549A..53K)
Note (5): The flux density of any associated 70 um point sources
          (S70m; Molinari et al. 2016A&A...591A.149M 2016A&A...591A.149M Cat. J/A+A/591/A149 ;
          Marton et al. 2017 preprint (arXiv:1705.05693)).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea3.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label     Explanations
--------------------------------------------------------------------------------
   1-  6  A6     ---     Cloud     Host cloud name, cloudN, [BT2009] N in Simbad
                                   (cloud)
   8- 20  A13    ---     CloudID   Host cloud ID, GLLL.ll+BB.bb,
                                   MSXDC GLLL.ll+BB.bb, in Simbad) (cloudID)
  22- 29  A8     ---     Core      Core cloud name, ANcNN (Name)
  31- 48  F18.14 deg     RAdeg     Core cloud right ascension (J2000) (RAdeg)
  50- 69 F20.16  deg     DEdeg     Core cloud declination (J2000) (DEdeg)
  71- 90 F20.17  arcsec  Reff      Effective radius in arsec unit (Reff)
  92-112 F21.19  pc      Reffpc    Effective radius in parsec unit (Reffpc)
 114-135 F22.17  Jy      Slambda   The total flux density at the observed
                                   frequency (Slambda)
 137-158 F22.17  Msun    M18K      The mass assuming a constant temperature
                                   of 18 K (M18K)
 160-162  A3     ---     Ref       Literature reference (ref) (1)
 164-166  F3.1   mm      lambda    the wavelength of the observations (lambda)
--------------------------------------------------------------------------------
Note (1): References as follows:
           B21 = This work, Barnes et al. 2021MNRAS.503.4601B 2021MNRAS.503.4601B
           H16 = Henshaw et al. 2017MNRAS.464L..31H 2017MNRAS.464L..31H
           H17 = Henshaw et al. 2016MNRAS.463..146H 2016MNRAS.463..146H
           L18 = Liu et al. 2018ApJ...862..105L 2018ApJ...862..105L, Cat. J/ApJ/862/105
           R06 = Rathborne et al. 2006ApJ...641..389R 2006ApJ...641..389R, Cat. J/ApJ/641/389
--------------------------------------------------------------------------------
History:
    From electronic version of the journal
(End)                                          Luc Trabelsi [CDS]    16-Apr-2024