J/MNRAS/503/4601      ALMA-IRDC from cloud to core scales        (Barnes+, 2021)

ALMA-IRDC: dense gas mass distribution from cloud to core scales. Barnes A.T., Henshaw J.D., Fontani F., Pineda J.E., Cosentino G., Tan J.C., Caselli P., Jimenez-serra I., Law C.Y., Avison A., Bigiel F., Feng S., Kong S., Longmore S.N., Moser L., Parker R.J., Sanchez-monge A., Wang K. <Mon. Not. R. Astron. Soc., 503, 4601-4626 (2021)> =2021MNRAS.503.4601B 2021MNRAS.503.4601B (SIMBAD/NED BibCode)
ADC_Keywords: Infrared sources; Millimetric/submm sources; Molecular clouds; Photometry, millimetric/submm; Star Forming Region; Milky Way Keywords: stars: formation - stars: massive - ISM: clouds Abstract: Infrared dark clouds (IRDCs) are potential hosts of the elusive early phases of high mass star formation (HMSF). Here, we conduct an in-depth analysis of the fragmentation properties of a sample of 10 IRDCs, which have been highlighted as some of the best candidates to study HMSF within the Milky Way. To do so, we have obtained a set of large mosaics covering these IRDCs with Atacama Large Millimeter/submillimeter Array (ALMA) at Band 3 (or 3 mm). These observations have a high angular resolution (∼3 arcsec; ∼0.05 pc), and high continuum and spectral line sensitivity (∼0.15 mJy/beam and ∼0.2 K per 0.1 km/s^ channel at the N2H+ (1 - 0) transition). From the dust continuum emission, we identify 96 cores ranging from low to high mass (M = 3.4-50.9 M) that are gravitationally bound (αvir = 0.3-1.3) and which would require magnetic field strengths of B = 0.3-1.0 mG to be in virial equilibrium. We combine these results with a homogenized catalogue of literature cores to recover the hierarchical structure within these clouds over four orders of magnitude in spatial scale (0.01-10 pc). Using supplementary observations at an even higher angular resolution, we find that the smallest fragments (<0.02 pc) within this hierarchy do not currently have the mass and-or the density required to form high-mass stars. None the less, the new ALMA observations presented in this paper have facilitated the identification of 19 (6 quiescent and 13 star-forming) cores that retain > 16 M without further fragmentation. These high-mass cores contain trans-sonic non-thermal motions, are kinematically sub-virial, and require moderate magnetic field strengths for support against collapse. The identification of these potential sites of HMSF represents a key step in allowing us to test the predictions from high-mass star and cluster formation theories. Description: To investigate the dense gas properties within the IRDC sample, we have acquired high-angular resolution dust continuum and molecular line observations with ALMA as part of the projects: 2017.1.00687.S and 2018.1.00850.S (PI: A.T. Barnes). The observations used the Band 3 receiver, which was configured to obtain high spectral resolution observations (0.1 km/s or 30.518 kHz) of N2H+ (1-0) centred at ∼93 GHz, and a broad continuum bandwidth of ∼4 GHz. Complementary observations were made in the C43-1 12 m array configuration (baselines of 15-314 m) and 7 m (ACA) array (baselines of 8-48 m). In order to identify clump, core and core-fragmented structures, we analyse these 10 clouds samples with the dendrogram analysis of the core ID and name, the host cloud, the centre RA and Dec (see section 3). These methods were applied on 3mm dust continuum emission maps, 12 and 7m array continuum maps, N2H+ (1-0) integrated intensity maps. Therefore these maps analysis give us integrated continuum fluxes, lines intensities and effectives radius of cores cloud and underlying structures. As a result, it allows us to compute a complete set of observational and physical properties of the core population as presented in the tablea12.dat. For the purpose of testing our results, we aim to make a comparison between the properties of the cores determined in this section to those presented within the literature. Thus, we include and compute properties of a large sample of cores and clumps from the literature that also covers our 10 clouds sample as we show in the tablea3.dat. We identify 96 cores across the 10 clouds within the ALMA continuum maps which we compute properties such as their masses. Finally, we study the phases of high mass star formation by an in-depth analysis of the hierarchical structure present within these molecular clouds, and assess the high-mass star-forming potential across fragmentation scales from clouds (∼1 pc), to clumps (∼0.5 pc), to cores (∼0.1 pc), and finally to core fragments (∼0.01 pc) (see conclusion section). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea12.dat 753 96 Observational properties of the core population tablea3.dat 166 430 Properties of the homogenized literature core sample -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea12.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- ID Core cloud ID (ID) 4- 11 A8 --- Core Core cloud name, ANcNN (Name) 13- 18 A6 --- Cloud Host infrared dark cloud name, cloudN, [BT2009] N in Simbad (Cloud) 20- 37 F18.14 deg RAdeg Right ascension of the core center (J2000) (RA_cen) 40- 59 F20.16 deg DEdeg Declination of the core center (J2000) (Dec_cen) 61- 78 F18.16 arcsec Reff Effective radius (radius_eff) 80- 99 F20.16 arcsec2 AreaExact Exact area defined by π*Reff2 (AreaExact) 102-120 F19.16 arcsec2 AreaEllipse Core cloud ellipse area computed from major_sigma, minor_sigma and position_angle (AreaEllipse) 123-140 F18.16 arcsec majorSigma parameter linked to semi-major axis of the Ellipse area parameter AreaEllipse (majorSigma) 142-160 F19.17 arcsec minorSigma Parameter linked to the semi-minor axis of the Ellipse area parameter AreaEllipse (minorSigma) 163-182 F20.15 deg PA [] Position angle defining the Core cloud ellipse inclination (PositionAngle) 184-205 F22.20 Jy Sv The total continuum flux density (Sv) 207-228 E22.20 Jy Svb The background-subtracted flux density (Svb) 230-251 F22.20 Jy Ivmax The peak continuum intensity from Sv (Ivmax) 253-270 F18.16 K Tmax Temperature (Tmax) (1) 272-289 F18.15 km/s v0 Centroid velocity (v0) (1) 291-309 F19.17 km/s e_v0 velocity dispersion (sigmav) (1) 311-314 A4 --- MMcore Millimetre core region label (MM) (2) 316 I1 --- f_SF [0/1] Binary number 0 or 1 (SF) (3) 318 A1 --- SF [y/n] Yes or No (SF) 320-325 F6.1 pc Distance Core cloud distance in parsec units (Distance_parsec) 327-346 F20.18 pc Reffpc Effective radius in untis of parsecs (Reff) 348-366 F19.17 pc Smin The minimum separation or nearest neighbour distance (Smin) 368-385 F18.15 K Tdust The mean dust temperature (Tdust) 387-407 F21.16 Msun M The mass determined using the mean dust temperature (M) 409-430 F22.17 Msun Mb The background-subtracted mass using the mean dust temperature (Mb) 432-452 F21.16 Msun M18K The mass determined using a constant temperature of 18K (M18K) 454-475 F22.17 Msun Mb18K The background-subtracted mass using a constant temperature of 18K (Mb18K) 477-496 F20.17 Msun Mext ? The extinction mass (Mext) (4) 498-510 F13.6 uJy S70um ? The flux density at 70um (S70um) (5) 512-529 F18.15 K T70um ? Estimated temperature associated to S70um flux density (T70um) 531-549 F19.16 Msun M70um ? The mass estimates using a temperature determined from 70 um emission (M70um) 551-569 F19.11 cm-3 nH2 The mean density of H2 into the core cloud (nH2) 571-590 F20.12 cm-3 nH2bgsub The background-subtracted mean density (nH2_bgsub) 592-611 F20.18 Myr tff the free-fall time (tff) 613-632 F20.18 Myr tffbgsub The background-subtracted free-fall time (tff_bgsub) 634-652 F19.17 --- alphavir The virial parameter (αvir) 654-673 F20.17 --- alphavirb The background-subtracted virial paramete (alphavirb) 675-693 F19.17 km/s sigmavrsub The residual velocity substracted (sigmavelressub) 695-715 F21.19 km/s sigmaNT ? The non-thermal velocity dispersion (sigmaNT) 716-733 F18.16 --- Machvrsub ? The residual sonic substracted Mach number (Mach_velressub) 735-753 F19.17 --- Machs ? The sonic non thermal Mach number (Machs_nonthermal) -------------------------------------------------------------------------------- Note (1): The results of the N2H+ Gaussian fits of peak brightness (See the dynamical properties section 3.3). Note (2): We show the millimetre (MM) core in which each core is contained (Rathborne et al.2006ApJ...641..389R, Cat. J/ApJ/641/389). Note (3): If the core contains an embedded (Spitzer or Herschel 70 um) infrared point source. Note (4): The mass determined from the near- and mid- infrared extinction maps (Mext; Kainulainen & Tan 2013A&A...549A..53K 2013A&A...549A..53K) Note (5): The flux density of any associated 70 um point sources (S70m; Molinari et al. 2016A&A...591A.149M 2016A&A...591A.149M Cat. J/A+A/591/A149 ; Marton et al. 2017 preprint (arXiv:1705.05693)). -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Cloud Host cloud name, cloudN, [BT2009] N in Simbad (cloud) 8- 20 A13 --- CloudID Host cloud ID, GLLL.ll+BB.bb, MSXDC GLLL.ll+BB.bb, in Simbad) (cloudID) 22- 29 A8 --- Core Core cloud name, ANcNN (Name) 31- 48 F18.14 deg RAdeg Core cloud right ascension (J2000) (RAdeg) 50- 69 F20.16 deg DEdeg Core cloud declination (J2000) (DEdeg) 71- 90 F20.17 arcsec Reff Effective radius in arsec unit (Reff) 92-112 F21.19 pc Reffpc Effective radius in parsec unit (Reffpc) 114-135 F22.17 Jy Slambda The total flux density at the observed frequency (Slambda) 137-158 F22.17 Msun M18K The mass assuming a constant temperature of 18 K (M18K) 160-162 A3 --- Ref Literature reference (ref) (1) 164-166 F3.1 mm lambda the wavelength of the observations (lambda) -------------------------------------------------------------------------------- Note (1): References as follows: B21 = This work, Barnes et al. 2021MNRAS.503.4601B 2021MNRAS.503.4601B H16 = Henshaw et al. 2017MNRAS.464L..31H 2017MNRAS.464L..31H H17 = Henshaw et al. 2016MNRAS.463..146H 2016MNRAS.463..146H L18 = Liu et al. 2018ApJ...862..105L 2018ApJ...862..105L, Cat. J/ApJ/862/105 R06 = Rathborne et al. 2006ApJ...641..389R 2006ApJ...641..389R, Cat. J/ApJ/641/389 -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Luc Trabelsi [CDS] 16-Apr-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line