J/MNRAS/504/338    A Galactic survey of radio jets from MYSOs    (Purser+, 2021)

A Galactic survey of radio jets from massive protostars. Purser S.J.D., Lumsden S.L., Hoare M.G., Kurtz S. <Mon. Not. R. Astron. Soc., 504, 338-355 (2021)> =2021MNRAS.504..338P 2021MNRAS.504..338P (SIMBAD/NED BibCode)
ADC_Keywords: Star Forming Region ; Galaxies, photometry ; YSOs ; Protostars ; Molecular clouds ; Radio sources ; Infrared sources; Keywords: surveys - stars: formation - stars: massive - stars: protostars - ISM: jets and outflows - radio continuum: ISM Abstract: In conjunction with a previous southern-hemisphere work, we present the largest radio survey of jets from massive protostars to date with high-resolution (∼0.04 arcsec) Jansky Very Large Array observations towards two subsamples of massive star-forming regions of different evolutionary statuses: 48 infrared-bright, massive, young, stellar objects (MYSOs) and 8 infrared dark clouds (IRDCs) containing 16 luminous (Lbol> 10^3L) cores. For 94 per cent of the MYSO sample, we detect thermal radio (α ≥ -0.1 whereby Sν ∝ να) sources coincident with the protostar, of which 84 per cent (13 jets and 25 candidates) are jet like. Radio luminosity is found to scale with L_ bol_ similarly to the low-mass case supporting a common mechanism for jet production across all masses. Associated radio lobes tracing shocks are seen towards 52 per cent of jet-like objects and are preferentially detected towards jets of higher radio and bolometric luminosities, resulting from our sensitivity limitations. We find jet mass-loss rate scales with bolometric luminosity as dMjet/dt ∝ Lbol^0.9± 0.2^, thereby discarding radiative, line-driving mechanisms as the dominant jet-launching process. Calculated momenta show that the majority of jets are mechanically capable of driving the massive, molecular outflow phenomena since pjet > poutflow. Finally, from their physical extent we show that the radio emission cannot originate from small, optically thick H II regions. Towards the IRDC cores, we observe increasing incidence rates/radio fluxes with age using the proxy of increasing luminosity-to-mass (L/M) and decreasing infrared flux ratios (S70um/S24um). Cores with (L/M)< 40 L/M are not detected above (5.8 GHz) radio luminosities of ∼1 mJy kpc2. Description: For this study, we perform survey towards a northern sample of 48 MYSOs utilizing the Very Large Array (VLA) in its most extended configuration and completing a Galactic radio survey of jets.The main goal is to establish a sample of identified, northern, ionized jets to augment the southern sample, as well as provide a set of Q band, matching-beam observations for a future C-band e-MERLIN legacy survey. We investigate the emergence of collimated outflow phenomena towards even earlier stages of massive star formation in the cores of infrared dark clouds (IRDCs), of which we have chosen eight fields from previous millimetre surveys. Full details of the sample, its constituting two subsamples and their selection procedure are discussed in Section 2. All observations were taken with the VLA in its configuration A-configuration, between 2012 October 13 and 2012 December 27 for 5.8 GHz observations (C band) and between 2014 March 16 and 2015 July 27 for 44 GHz (Q band). Resulting imaging parameter, such as restoring beam dimensions, and image noise levels are summarized in tablea1.dat (procedure details in section 2 and 3). An important diagnostic of collimated jets are spectral changes in flux and deconvolved major axis length. In order to analyse our sub-samples and learn more about MYSOs jets sources, we computed for both C and Q frequency band fluxes of primary beam peak, convolved and deconvolved major and minor axis angles and also the position angle of the major axis length (see tablea2-a4.dat). Hereafter, we classified each target (tablea5.dat and table 3) and derived spectral and deconvolved indices to study collimated jets from radio sources detected. From our analysis (see section 4 and 5), we calculated at C and Q frequency band, opening angles and mass loss rates for jets (dmjet/dt) as exhibited in tablea6.dat which led us to find its proportional relationship with the bolometric luminosity (see formula 6, section 5). Additionally, the table1.dat and table2.dat describe respectively all cores within the C-band field of view of our observed IRDC subsample and all targets observed within our MYSO subsample. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 108 45 *All cores within the C-band field of view of our observed IRDC subsample table2.dat 117 48 All targets observed within our MYSO subsample tablea1.dat 96 56 Resulting imaging parameter of our observed IRDC subsample and MYSO subsample in C-band and Q-band taken with the VLA observatory tablea2.dat 109 231 Positions and fluxes at the primary beam C-band for all detected sources tablea3.dat 96 178 Positions and fluxes at the primary beam Q-band for all detected sources tablea4.dat 92 231 Deconvolved sizes and position angles at both C and Q-band for all detected sources tablea5.dat 78 174 Classifications, derived spectral indices for both flux and major axis length and calculated changes in position angles from C to Q-band tablea6.dat 58 62 Classifications, opening angles and mass loss rats for all jet-like radio sources detected appen.pdf 512 24416 Appendix pdf file of the paper -------------------------------------------------------------------------------- Note on table1.dat: Distances, bolometric luminosities, and IR ratios, and their errors, are derived following the method described in Section 2.3. -------------------------------------------------------------------------------- See also: J/ApJ/715/310 : Early stages of star formation in IRDCs (Rathborne+, 2010) J/ApJS/208/11 : The Red MSX Source Survey: massive protostars (Lumsden+, 2013) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 13 A13 --- Target Target name (IRDC) 15- 18 A4 --- Core Core name (MMNN) 19 A1 --- n_Core [*] Note on Core (1) 21- 22 I2 h RAh Right ascension (J2000) 24- 25 I2 min RAm Right ascension (J2000) 27- 30 F4.1 s RAs Right ascension (J2000) 32 A1 --- DE- Declination sign (J2000) 33- 34 I2 deg DEd Declination (J2000) 36- 37 I2 arcmin DEm Declination (J2000) 39- 40 I2 arcsec DEs Declination (J2000) 42- 45 F4.2 kpc Dist Distance 47- 50 F4.2 kpc E_Dist Distance error (upper value) 52- 55 F4.2 kpc e_Dist Distance error (lower value) 57- 61 I5 Lsun Lbol ? Bolometric luminosity 63- 67 I5 Lsun E_Lbol ? Bolometric luminosity error (upper value) 69- 73 I5 Lsun e_Lbol ? Bolometric luminosity error (lower value) 75- 77 I3 Lsun bLbol ? Lower value of possible bolometric luminosity range (2) 78 A1 --- --- [-] 79- 82 I4 Lsun BLbol ? Upper value of possible bolometric luminosity range (2) 85 I1 --- n_Sratio [1/2]? Note on Sratio (3) 87- 90 I4 --- Sratio ?=- Flux density ratio 70um/24um (S70um/S24um) 92- 96 I5 --- e_Sratio ? Flux density ratio 70um/24um (S70um/S24um) error 98-100 I3 Msun Mcore Core mass 102-104 I3 Msun E_Mcore ? Core mass error (upper value) 106-108 I3 Msun e_Mcore ? Core mass error (lower value) -------------------------------------------------------------------------------- Note (1): * for core used as the observational phase centre for its IRDC complex (with the exception of G033.69-00.01; see Section 3.1). Note (2): Calculations of this range used our derived distances and the ranges in luminosity given by Rathborne et al. (2010ApJ...715..310R 2010ApJ...715..310R, Cat. J/ApJ/715/310). This uncertainty in luminosity is due to the lack of 24 or 60-100um detections and their constraint upon the SEDs. Note (3): Mid-infrared flux ratios have superscripts that determine how their flux ratios were calculated, which are as follows: 1 = direct interpolation and ratio of measured fluxes 2 = derived from fitted SED parameters -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 18 A18 --- Target Target name (MYSO) 19 A1 --- n_Target [*] Note on Target (1) 21- 31 A11 --- IRAS IRAS name 33- 46 A14 --- OName Other name 48- 49 I2 h RAh Right ascension (J2000) 51- 52 I2 min RAm Right ascension (J2000) 54- 58 F5.2 s RAs Right ascension (J2000) 60 A1 --- DE- Declination sign (J2000) 61- 62 I2 deg DEd Declination (J2000) 64- 65 I2 arcmin DEm Declination (J2000) 67- 70 F4.1 arcsec DEs Declination (J2000) 72- 73 I2 --- r_Dist ? Distance reference (2) 75- 78 F4.2 kpc Dist Distance 80- 83 F4.2 kpc E_Dist Distance error (upper value) 85- 88 F4.2 kpc e_Dist Distance error (lower value) 90- 95 I6 Lsun Lbol ? Bolometric luminosity 97-102 I6 Lsun E_Lbol ? Bolometric luminosity error (upper value) 104-108 I5 Lsun e_Lbol ? Bolometric luminosity error (lower value) 110-113 F4.1 --- Sratio ?=- Flux density ratio 70um/24um (S70um/S24um) 115-117 F3.1 --- e_Sratio ? Flux density ratio 70um/24um (S70um/S24um) error -------------------------------------------------------------------------------- Note (1): An asterisk indicates that our data for that object were previously presented by Rosero et al. (2019ApJ...880...99R 2019ApJ...880...99R). Note (2): Distances, and their errors, are derived following the method described in Section 2.3 unless when a reference number is given, as follows: 1 = Fujisawa et al. (2012PASJ...64...17F 2012PASJ...64...17F) 2 = Zhang et al. (2009ApJ...693..419Z 2009ApJ...693..419Z) 3 = Wu et al. (22014A&A...566A..17W014) 4 = Rygl et al. (2012A&A...539A..79R 2012A&A...539A..79R) 5 = Choi et al. (2014ApJ...790...99C 2014ApJ...790...99C) 6 = Rygl et al. (2010A&A...511A...2R 2010A&A...511A...2R) 7 = Moscadelli et al. (2009ApJ...693..406M 2009ApJ...693..406M) 8 = Imai et al. (2000ApJ...538..751I 2000ApJ...538..751I) 9 = Hachisuka et al. (2006ApJ...645..337H 2006ApJ...645..337H) 10 = Kawamura et al. (1998ApJS..117..387K 1998ApJS..117..387K) 11 = Burns et al. (2017MNRAS.467.2367B 2017MNRAS.467.2367B) 12 = Honma et al. (2007PASJ...59..889H 2007PASJ...59..889H) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Sample Sample name IRDc or MYSO (NameSample) 12- 29 A18 --- Target Target name (Target) 31- 35 F5.3 arcsec tetMajC Major axis angle of the convolving beam for the observed frequency band C such as tetMajC x tetMinC (tetMajC) 37- 41 F5.3 arcsec tetMinC Minor axis angle of the convolving beam for the observed frequency band C such as tetMajC x tetMinC (tetMinC) 43- 48 F6.1 deg PAC Position angle of the major axis angle for the observed frequency band C (PositionAngleC) 50- 54 F5.3 arcsec tetMajQ ? Major axis angle of the convolving beam for the observed frequency band Q such as tetMajQ x tetMinQ (tetMajQ) 56- 60 F5.3 arcsec tetMinQ ? Minor axis angle of the convolving beam for the observed frequency band Q such as tetMajQ x tetMinQ (tetMinQ) 62- 66 F5.1 deg PAQ ? Position angle of the major axis angle for the observed frequency band Q (PositionAngleQ) 68- 70 I3 uJy sigmaRMSC Root mean square noise level for the observed frequency band C (sigmaRMSC) 72- 73 I2 uJy sigmaRMSQ ? Root mean square noise level for the observed frequency band Q (sigmaRMSQ) 75 A1 --- f_sigmaRMSC Yes or No sigmaRMSC flag in C-band of whether the noise in the image was limited thermally, or by dynamic range/spatial frequency uv-cover age limitations (f_sigmaRMSC) 77 A1 --- f_sigmaRMSQ ? Yes or No sigmaRMSQ flag in Q-band of whether the noise in the image was limited thermally, or by dynamic range/spatial frequency uv-coverage limitations (f_sigmaRMSQ) 79- 85 A7 --- Figure Figures showing the image data (Figure) (1) 87- 96 A10 --- SectNote The section detailed notes/literature review (Notes) (1) -------------------------------------------------------------------------------- Note (1): Figures and section detailed are available in appen.pdf file. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Sample Sample name IRDc or MYSO (NameSample) 12- 29 A18 --- Target Target name (Target) 31- 37 A7 --- Lobe Lobe classifications name (Lobe) 39- 40 I2 h RAh ? Right ascension (J2000) (RAh) 42- 43 I2 min RAm ? Right ascension (J2000) (RAm) 45- 51 F7.4 s RAs ? Right ascension (J2000) (Ras) 53- 55 I3 mas e_RAs ? Mean error on RAs (deltaRA) 57- 58 A2 --- neRAs Note on Mean error on RAs (notedeltaRA) (1) 60 A1 --- DE- Sign of declination 61- 62 I2 deg DEd ? Declination (J2000) (DEdeg) 64- 65 I2 arcmin DEm ? Declination (J2000) (DEarcmin) 67- 72 F6.3 arcsec DEs ? Declination (J2000) (DEarcsec) 74- 76 I3 mas e_DEs ? Mean error on DEs (deltaDE) 78- 79 A2 --- neDEs Note on Mean error on DEs (notedeltaDE) (1) 82 A1 --- l_Speak5.8 Limit flag on parameter Speak5.8 (l_Speak5.8) 84- 88 F5.2 mJy/beam Speak5.8 Peak flux density at 5.8 GHz where beam is a nominal area over which the brightness is defined (Speak5.8) (2) 90- 93 F4.2 mJy/beam e_Speak5.8 ? Mean error on Speak5.8 (Speak5.8error) 95 A1 --- l_S5.8 Limit flag on parameter S5.8 (l_S5.8) (2) 97-103 F7.2 mJy S5.8 Flux at 5.8 GHz (S5.8) 105-109 F5.2 mJy e_S5.8 ? Mean error on S5.8 (S5.8error) -------------------------------------------------------------------------------- Note (1): PP value indicates that the source is extended and listed positions are those of the pixels of peak-flux. Note (2): Cases where flux upper-limits are given with no positional entries are for Q-band only detections. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Sample Sample name IRDc or MYSO (NameSample) 12- 29 A18 --- Target Target name (Target) 31- 37 A7 --- Lobe Lobe classifications name (Lobe) 39- 40 I2 h RAh ? Right ascension (J2000) (RAh) 42- 43 I2 min RAm ? Right ascension (J2000) (RAm) (1) 45- 51 F7.4 s RAs ? Right ascension (J2000) (Ras) (1) 53- 54 I2 mas e_RAs ? Mean error on RAs (deltaRA) (1) 56 A1 --- DE- ? Sign of declination (1) 57- 58 I2 deg DEd ? Declination (J2000) (DEdeg) (1) 60- 61 I2 arcmin DEm ? Declination (J2000) (DEarcmin) (1) 63- 68 F6.3 arcsec DEs ? Declination (J2000) (DEarcsec) (1) 70- 71 A2 mas e_DEs ? Mean error on DEs (deltaDE) (1) 73 A1 --- l_Speak44 ? Limit flag on parameter Speak44 (l_Speak44) (2) 75- 78 F4.2 mJy/beam Speak44 ? Peak flux density at 44 GHz where beam is a nominal area over which the brightness is defined (Speak44) (2) 80- 83 F4.2 mJy/beam e_Speak44 ? Mean error on Speak44 (Speak44error) (2) 85 A1 --- l_S44 ? Limit flag on parameter S44 (l_S44) 87- 91 F5.2 mJy S44 ? Flux at 44 GHz (S44) (2) 93- 96 F4.2 mJy e_S44 ? Mean error on S44 (S44error) (2) -------------------------------------------------------------------------------- Note (1): Entries with no information at all are outside of the Q-band primary beam. Note (2): Cases with flux upper-limits but no positional data show sources that were detected at C-band but were undetected within the primary beam at Q-band. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Sample Sample name IRDc or MYSO (NameSample) 12- 29 A18 --- Target Target-Object name (Object) 31- 37 A7 --- Lobe Lobe classifications name (Lobe) 39 A1 --- l_tetMaj5.8 Limit flag on parameter tetMaj5.8 (l_tetMaj5.8) 41- 44 I4 mas tetMaj5.8 ? Deconvolved major axis angle for the observed primary beam peak at 5.8 GHz in C-band (tetMaj5.8) 46- 48 I3 mas e_tetMaj5.8 ? Mean error of tetMaj5.8 (e_tetMaj5.8) 50 A1 --- l_tetMin5.8 Limit flag on parameter tetMaj5.8 (l_tetMaj5.8) 52- 55 I4 mas tetMin5.8 ? Deconvolved minor axis angle for the observed primary beam peak at 5.8 GHz in C-band (tetMin5.8) 57- 59 I3 mas e_tetMin5.8 ? Mean error of tetMin5.8 (e_tetMin5.8) 61- 63 I3 deg PA5.8 ? Position angle of tetMaj5.8 (PA5.8) 65- 66 I2 deg e_PA5.8 ? Mean error of PA5.8 (e_PA5.8) 68 A1 --- l_tetMaj44 Limit flag on parameter tetMaj44 (l_tetMaj44) 70- 72 I3 mas tetMaj44 ? Deconvolved major axis angle for the observed primary beam peak at 44 GHz in Q-band (tetMaj44) 74- 75 I2 mas e_tetMaj44 ? Mean error of tetMaj44 (e_tetMaj44) 77 A1 --- l_tetMin44 Limit flag on parameter tetMin44 (l_tetMin44) 79- 81 I3 mas tetMin44 ? Deconvolved minor axis angle for the observed primary beam peak at 44 GHz in Q-band (tetMin44) 83- 84 I2 mas e_tetMin44 ? Mean error of tetMin44 (e_tetMin44) 86- 88 I3 deg PA44 ? Position angle of tetMaj44 (PA44) 90- 92 I3 deg e_PA44 ? Mean error of PA44 (e_PA44) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Sample Sample name IRDc or MYSO (NameSample) 12- 29 A18 --- Target Target-object name (Target) 31- 37 A7 --- Lobe Lobe classifications name (Lobe) 39- 45 A7 --- Class Radio sources classification name associated with lobe classification (Class.) 47 A1 --- l_alpha Derived spectral indices for fluxes whereby S is proportional to να (alpha) 49- 53 F5.2 --- alpha ? Derived spectral indices for fluxes whereby S is proportional to να (alpha) 55- 58 F4.2 --- e_alpha ? Mean error of alpha (e_alpha) 60 A1 --- l_gamma Limit flag on parameter gamma (l_gamma) 62- 66 F5.2 --- gamma ? Derived deconvolved indices for major axis angle whereby tetMaj is proportional to νγ (gamma) 68- 71 F4.2 --- e_gamma ? Mean error of gamma (e_gamma) 73- 74 I2 deg deltatetPA ? Calculated changes in position angles from C to Q-band (deltatetPA) 76- 78 I3 deg e_deltatetPA ? Mean error of deltatetPA (e_deltatetPA) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Sample Sample name IRDc or MYSO (NameSample) 12- 29 A18 --- Target Object name with jet-like radio emission detected originaly from IRDc or MYSOs sample (MYSO) 31- 35 A5 --- Lobe Lobe classifications name (Lobe) 37- 38 I2 deg tetaCOA ? Opening angle of the jet for the C-band frequency (1) 40- 42 I3 deg e_tetaCOA ? Mean error of tetaCOA (e_tetaCOA) 44- 45 I2 deg tetaQOA ? Opening angle of the jet for the Q-band frequency (1) 47- 48 I2 deg e_tetaQOA ? Mean error of tetaCOA (e_tetaCOA) 50- 53 F4.1 10-6Msun/yr dMjet/dt Mass loss rates (dMjet/dt) (2) 55- 58 F4.1 10-6Msun/yr e_dMjet/dt Mean error on parameter dmjet/dt (e_dMjet/dt) (2) -------------------------------------------------------------------------------- Note (1): Derived with computation formula including deconvolved minor and major axis angle such as 2*arctan(tetaMin/tataMaj) (see section 5.5 of Purser et al. 2016MNRAS.460.1039P 2016MNRAS.460.1039P) Note (2): Mass loss rates given are the weighted average of dmjet/dt calculated at each frequency available. Calculation of mass loss rates and their errors at each frequency is discussed in paragraph C of appen.pdf file. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Luc Trabelsi [CDS] 22-Apr-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line