J/MNRAS/510/2041    Planetary systems study with GALAH surveys    (Clark+, 2022)

The GALAH Survey improving our understanding of confirmed and candidate planetary systems with large stellar surveys. Clark J.T., Wright D.J., Wittenmyer R.A., Horner J., Hinkel N.R., Clerte M., Carter B.D., Buder S., Hayden M.R., Bland-Hawthorn J., Casey A.R., De Silva G.M., D'Orazi V., Freeman K.C., Kos J., Lewis G.F., Lin J., Lind K., Martell S.L., Schlesinger K.J., Sharma S., Simpson J.D., Stello D., Zucker D.B., Zwitter T., Munari U., Nordlander T. <Mon. Not. R. Astron. Soc. 510, 2041-2060 (2022)> =2022MNRAS.510.2041C 2022MNRAS.510.2041C (SIMBAD/NED BibCode)
ADC_Keywords: Milky Way ; Stars, variable ; Exoplanets ; Positional data ; Spectroscopy ; Photometry ; Effective temperatures ; Abundances ; Abundances, [Fe/H] ; Models, atmosphere ; Stars, diameters ; Stars, masses ; Stars, ages ; Radial velocities ; Rotational velocities Keywords: surveys; planets and satellites: detection - planets and satellites: fundamental parameters - planets and satellites: terrestrial planets - stars: fundamental parameters Abstract: Pioneering photometric, astrometric, and spectroscopic surveys is helping exoplanetary scientists better constrain the fundamental properties of stars within our galaxy and the planets these stars host. In this study, we use the third data release from the stellar spectroscopic GALAH Survey, coupled with astrometric data of eDR3 from the Gaia satellite, and other data from NASA's Exoplanet Archive, to refine our understanding of 279 confirmed and candidate exoplanet host stars and their exoplanets. This homogenously analysed data set comprises 105 confirmed exoplanets, along with 146 K2 candidates, 95 TESS Objects of Interest (TOIs), and 52 Community TOIs (CTOIs). Our analysis significantly shifts several previously (unknown) planet parameters while decreasing the uncertainties for others. Our radius estimates suggest that 35 planet candidates are more likely brown dwarfs or stellar companions due to their new radius values. We are able to refine the radii and masses of WASP-47 e, K2-106 b, and CoRoT-7 b to their most precise values yet to less than 2.3 per cent and 8.5 per cent, respectively. We also use stellar rotational values from GALAH to show that most planet candidates will have mass measurements that will be tough to obtain with current ground-based spectrographs. With GALAH's chemical abundances, we show through chemo-kinematics that there are five planet hosts that are associated with the galaxy's thick disc, including NGTS-4, K2-183, and K2-337. Finally, we show that there is no statistical difference between the chemical properties of hot Neptune and hot rocky exoplanet hosts, with the possibility that short-period rocky worlds might be the remnant cores of hotter, gaseous worlds. Description: Here we refine planet host systems parameters increasing the parameters precision of planet's host star which give rise to be more accurate on exoplanet parameter values. In this work, we use data from the GALAH DR3 and Gaia EDR3 to refine the stellar parameters for a total of 280 stars in the TESS Input Catalog (TIC). We show how GALAH data can greatly improve the precision of our characterization of potential planet hosting stars, (i.e refer to Introduction section). Firstly we focus on stellar parameters as detailed in the section 2 Determining stellar parameters, we cross-match GALAH catalogues (HERMES spectrograph with Anglo-Australian telescope) with TESS and K2 survey data (TIC v8.2 Cat. IV/39 and K2 Cat. IV/34) (i.e see section 2.1.1 GALAH DR3). We also cross-match GALAH DR3 (Buder et al. 2021MNRAS.506..150B 2021MNRAS.506..150B, Cat. J/MNRAS/506/150) with Gaia DR2 and EDR3 (Cat. I/345 and Cat. I/350). Next, to get confirmed and candidate exoplanet systems, we cross-match previous star catalogues with NEA, TESS TOI/CTOI and K2 candidates by comparing their 2MASS and TIC identifiers, (i.e refer to section 2.1.2 Cross-matching with other stellar and planetary catalogues). From this cross-matching, we have identified 280 stars within GALAH DR3 that host either confirmed or candidate exoplanets. From our sample (better spectroscopic/photometric and positional data from lasts data release observations), we derive stellar parameters refining their last values with the help of Isochrones and stellar evolution grid approaches (i.e see section 2.2 Stellar masses, radii, luminosities, ages via isochrones for details on approach methods and data comparisons). Stellar results are concatenated in the tablea1.dat. Finally, as explicited in the section 3 Refining planetary systems, we use our new refine stellar results to compute and thus refine planetary parameters giving birth to a sample of 398 planets with improved data. Planet results are presented in the tablea2.dat. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 322 280 Our refined stellar parameters for 280 confirmed and candidate exoplanet hosting stars tablea2.dat 351 398 Our refined planet parameters for 398 confirmed and candidate exoplanets -------------------------------------------------------------------------------- See also: J/MNRAS/506/150 : The GALAH+ Survey DR3 (Buder+, 2021) IV/39 : TESS Input Catalog version 8.2 (TIC v8.2) (Paegert+, 2021) IV/34 : K2 Ecliptic Plane Input Catalog (EPIC) (Huber+, 2017) I/350 : Gaia EDR3 (Gaia Collaboration, 2020) I/345 : Gaia DR2 (Gaia Collaboration, 2018) https://exoplanetarchive.ipac.caltech.edu/ : NEA exoplanets home page https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView /nph-tblView?app=ExoTbls&config=k2pandc : K2 exoplanet candidates catalogue https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView /nph-tblView?app=ExoTbls&config=TOI : TESS TOI exoplanet candidates cat https://exofop.ipac.caltech.edu/tess/view_ctoi.php : CTOI exoplanet candidates Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 I9 --- TIC TESS Input Catalog DR8 identifier (ID_TIC) 11- 26 A16 --- 2MASS 2MASS identifier (HHMMSSss+DDMMSSs, J2000) (ID_TWOMASS) 28- 46 I19 --- GaiaEDR3 GaiaEDR3 unique source identifier (ID_GAIADR3) 48- 56 F9.5 deg RAdeg GAIA DR3 right ascension (ICRS) at Ep=2016.0 (RA) 58- 64 F7.5 deg e_RAdeg GAIA DR3 standard right ascension error (e_RA) 66- 74 F9.5 deg DEdeg GAIA DR3 declination (ICRS) at Ep=2016.0 (Dec) 76- 82 F7.5 deg e_DEdeg GAIA DR3 declination error (e_Dec) 84- 93 F10.5 K Teff GALAH DR3 effective temperature (teff) 95-103 F9.5 K e_Teff GALAH DR3 mean on error effective temperature (e_teff) 105-111 F7.5 [cm/s2] logg GALAH DR3 surface gravity (logg) 113-119 F7.5 [cm/s2] e_logg GALAH DR3 mean error on surface gravity (e_logg) 121-128 F8.5 [-] [Fe/H] GALAH DR3 iron abundance (FeH) 130-136 F7.5 [-] e_[Fe/H] GALAH DR3 mean error on iron abundance ([Fe/H]) 138-145 F8.5 [-] [alpha/Fe] ? GALAH DR3 alpha to iron abundance ratio (alphaFe) 147-153 F7.5 [-] e_[alpha/Fe] ? GALAH DR3 mean error on [alpha/Fe] alpha Abundance (e_alphaFe) 155-162 F8.5 [-] [M/H] Overall metalicity (MH) (1) 164-170 F7.5 [-] e_[M/H] Overall metalicity (e_MH) 172-179 F8.5 Rsun R* Stellar radius (radius) (2) 181-187 F7.5 Rsun e_R* Stellar radius error (e_radius) 189-195 F7.5 Msun M* Stellar mass (mass) (2) 197-203 F7.5 Msun e_M* Stellar mass error (e_mass) 205-214 F10.5 Lsun L* Stellar luminosity (lum) (3) 216-224 F9.5 Lsun e_L* Stellar luminosity error (e_lum) 226-233 F8.5 [yr] log(Age) Stellar age (age) (2) 235-241 F7.5 [yr] e_log(Age) Stellar age error (e_age) 243-252 F10.5 km/s RV GALAH DR3 Radial velocity (rv) (5) 254-260 F7.5 km/s e_RV GALAH DR3 Radial velocity error (e_rv) 262-269 F8.5 km/s Vsini GALAH DR3 Rotational velocity (vsini) (5) 271-277 F7.5 km/s e_Vsini GALAH DR3 rotational velocity error (e_vsini) 279-286 F8.5 AU HZ1 Recent Venus Habitable Zone (HZ1) (4) 288-295 F8.5 AU HZ2 Runaway Greenhouse Habitable Zone (HZ2) (4) 297-304 F8.5 AU HZ3 Moist Greenhouse Habitable Zone (HZ3) (4) 306-313 F8.5 AU HZ4 Maximum Greenhouse Habitable Zone (HZ4) (4) 315-322 F8.5 AU HZ5 Early Mars Habitable Zone (HZ5) (4) -------------------------------------------------------------------------------- Note (1): During physical parameters extraction from isochrones method (i.e see section 2.2 Stellar masses, radii, luminosities, ages via isochrones), we include [M/H] star's global metallicity derived by GALAH's [Fe/H] and [α/Fe] abundances formulated by Salaris & Cassisi (2006essp.book.....S 2006essp.book.....S) as equation 1 of this section shows. Note (2): As explained in the section 2.2 Stellar masses, radii, luminosities, ages via isochrones, we derive physical parameters of these host stars using a similar approach to Clark et al. (2021MNRAS.504.4968C 2021MNRAS.504.4968C), implementing the python package isochrones (Morton 2015ascl.soft03010M). Isochrones derives physical parameters from observed stellar parameters using the stellar evolution grid, MESA Isochrones & Stellar Tracks (MIST; Choi et al. 2016ApJ...823..102C 2016ApJ...823..102C). We use stellar parameters from all catalogues cross matched with GALAH DR3 to identify 280 stars that host either confirmed or candidate exoplanets, (i.e see section 2.1.2 Cross-matching with other stellar and planetary catalogues). Note (3): A star's stellar luminosity L* is then calculated through the Stefan-Boltzmann relationship using Teff and R*, (see section 2.2 Stellar masses, radii, luminosities, ages via isochrones). Note (4): Then, L* is used to derive the habitable zone boundaries for each star, as formulated by Kopparapu et al. (2013ApJ...765..131K 2013ApJ...765..131K). We include all five HZ boundaries within Kopparapu et al. (2013ApJ...765..131K 2013ApJ...765..131K) including Recent Venus, Runaway Greenhouse, Moist Greenhouse, Maximum Greenhouse, and Early Mars. Note (5): Rotational, radial and microturbulence velocities from GALAH DR3 have also been in to assist ground-based radial velocity teams to better prioritize follow-up targets, including K2, TOI, and CTOI candidates. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 I9 --- TIC TESS Input Catalog DR8 identifier (ID_TIC) 11- 29 A19 --- CandID Confirmed exoplanet EXO or Candidate exoplanet TOI/CTOI/K2 name identifier (candID) 31- 40 F10.5 d P ? Orbital period (period) 42- 51 F10.5 d e_P ? Orbital period error (e_period) 53- 59 F7.5 AU MajAxis ? Semi-Major axis (au) (1) 61- 67 F7.5 AU e_MajAxis ? Semi-Major Axis error (e_au) 69- 75 F7.5 --- Rp/R* ? Planet to star radius ratio (pl2st) 77- 83 F7.5 --- e_Rp/R* ? Planet to star ratio error (e_pl2st) 85- 94 F10.5 --- MajAxis/R* ? Semi-Major axis to stellar radius ratio (au2st) 96- 104 F9.5 --- e_MajAxis/R* ? Semi-Major Axis to Stellar radius ratio error (e_au2st) 106- 115 F10.5 % DeltaF ? Planet transit depth in per cent (trandep) (2) 117- 123 F7.5 % e_DeltaF ? Planet transit depth error in per cent (e_trandep) 125- 132 F8.5 deg i ? Orbital inclination angle (orbinc) 134- 141 F8.5 deg e_i ? Orbital inclination error (e_orbinc) 143- 149 F7.5 --- Ecc ? Orbital eccentricity (ecc) 151- 157 F7.5 --- e_Ecc ? Orbital eccentricity error (e_ecc) 159- 167 F9.5 m/s K ? Radial velocity semi-amplitude KRV define along the observer's line of sight (rvamp) 169- 176 F8.5 m/s e_K ? Radial velocity semi-Amplitude error (e_rvamp) 178- 186 F9.5 Rgeo Rp ? Planet radius (radius) 188- 195 F8.5 Rgeo e_Rp ? Planet radius error (e_radius) 197- 205 F9.5 Mgeo Mp ? Planet mass (mass) (4) 207- 217 F11.5 Mgeo e_Mp ? Planet mass error [M_Earth] (e_mass) 219- 223 A5 --- f_Mp [mass msini] Planet mass flag indicates if Mp is mass or mass*sin(i) (flag_mass) 225- 231 F7.5 g/cm3 rhop ? Planet density (density) 233- 239 F7.5 g/cm3 e_rhop ? Planet density error (e_density) 241- 253 F13.5 Earth Seff ? Planet insolation flux in flux earth unit (seff) (3) 255- 267 F13.5 Earth e_Seff ? Planet insolation flux error (e_seff) 269- 279 F11.5 K TpWM ? Planet effective/equilibrium temperature in atmosphere 'well-mixed' case (eqtempwm) (3) 281- 289 F9.5 K e_TpWM ? Mean error on TpWM (e_eqtempwm) 291- 301 F11.5 K TpHD ? Planet effective/equilibrium temperature in atmosphere 'hot-dayside' case (eqtemphds) (3) 303- 312 F10.5 K e_TpHD ? Mean error on TpHD (e_eqtemphds) 314- 321 F8.5 m/s2 gp ? Planet surface gravity (surfGrav) 323- 329 F7.5 m/s2 e_gp ? Planet surface gravity error (e_surfGrav) 331- 338 F8.5 km/s Vesc ? Planet escape velocity (escVel) 340- 346 F7.5 km/s e_Vesc ? Planet escape velocity error (e_escVel) 348- 351 A4 --- Cat [EXO K2 TOI CTOI] Planet catalogue reference (flag_cat) (5) -------------------------------------------------------------------------------- Note (1): The planet's semimajor axis is calculated by Kepler's third law, incorporating our revised stellar mass values M* (i.e see section 3 Refining planetary systems). Note (2): As there are multiple catalogues with differing definitions of transit depth (i.e. some report it in mmag, others as a percentage or as (R*/Rp)2), we convert all transit depths to percentages. Thus, the exoplanet's radius is defined by equation 2 of the section 3 Refining planetary systems, where ΔF our the percentage transit depth in per cent as 100*(Rp,n/R*,n)2 with Rp,n = Rp/R and R*,n = R*/R. Note (3): Our new MajAxis and L* values are used to derive planet insolation flux values Seff. Hereafter, new star Teff and L* values are implemented in planet's effective temperature computations for the two atmosphere approaches 'well-mixed' and 'hot-dayside' (i.e see equation 3 in the section 3 Refining planetary systems). Note (4): Only for confirmed exoplanets EXO which already have measured line of sight mass or mass*sin(i), we refine their masses, given our stellar mass values given by the equation 4 of the the section 3 Refining planetary systems. Note (5): In our sample with we have 4 groups of the planetary or potential planetary systems that these stars host as follows: EXO = 105 exoplanets confirmed by NASA's Exoplanet Archive (NEA, https://exoplanetarchive.ipac.caltech.edu/) K2 = 146 only K2 exoplanet candidates (K2, https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/ nph-tblView?app=ExoTbls&config=k2pandc) TOI = 95 TESS TOI exoplanet candidates (TOI, https://exofop.ipac.caltech.edu/tess/view_toi.php and https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/ nph-tblView?app=ExoTbls&config=TOI) CTOI = 52 TESS Community CTOI exoplanet candidates (CTOI, https://exofop.ipac.caltech.edu/tess/view_ctoi.php) Because the NEA is designed now to have multiple entries for a single exoplanet or planetary system, the challenge then becomes what observables we use to refine and re-characterize these exoplanets and planetary systems. We have used a weighted mean approach to determine a single value for our K2 candidate transit depths and orbital inclinations. We have also used a weighted mean approach to derive exoplanet transit depths, radial velocity semi-amplitudes, and orbital eccentricities, inclinations, and periods where available. These weighted mean values are then used to refine the planetary mass and radii values in our catalogue (refer to equations 5 and 6 of the section 3 Refining planetary systems). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Luc Trabelsi [CDS] 30-Oct-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line