J/MNRAS/512/1598 SrV and SrVI transition probabilities (Aloui+, 2022)
Sr V-VI line widths in hot white dwarf atmospheres.
Aloui R., Elabidi H., Sahal-Brechot S.
<Mon. Not. R. Astron. Soc. 512, 1598 (2022)>
=2022MNRAS.512.1598A 2022MNRAS.512.1598A (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics
Keywords: atomic data - line: profiles - stars: atmospheres -
stars: individual: RE 0503-289 - white dwarfs
Abstract:
Missing Stark widths for 37 spectral lines of strontium ions (17
SrV lines and 20 SrVI lines) have been calculated using a
quantum-mechanical method. Twenty-three spectral lines of SrV have
been recently discovered, for the first time, in the ultraviolet
spectrum of the hot white dwarf RE 0503-289. This recent discovery
prompts us to calculate the Stark widths of the new lines. These
calculations can fill the lack of the data base STARK-B and can be
used to investigate the observed spectra in such stars. To perform the
line broadening calculations, preliminary structure and collision
calculations have been carried out using the sequence of the
University College London codes (superstructure, distorted wave, and
jajom). Results for the 37 lines are provided for different electron
temperatures and at density Ne=1017cm-3. These results will
enter the STARK-B data base, which is a node of the Virtual Atomic and
Molecular Data Center. We hope that the obtained results will be
useful for the non-local thermodynamic equilibrium modelling of
stellar atmospheres.
Description:
We present Current spontaneous transition probabilities Aij, weighted
oscillator strengths gf, and line strengths S for SrV and SrVI allowed
transitions.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 49 85 Current SrV fine structure energy levels
compared with the NIST results
table2.dat 62 21 Current SrVI fine structure energy levels
compared with MCDF, NIST and experimental results
table3.dat 37 921 Current spontaneous transition probabilities Aij,
weighted oscillator strengths gf, and line
strengths S for SrV allowed transitions
table4.dat 34 69 Current spontaneous transition probabilities Aij,
weighted oscillator strengths gf, and line
strengths S for SrVI allowed transitions
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- i [1/85] Index
4- 35 A32 --- Level Level
37- 42 I6 cm-1 Current Current SRV fine structure energy level
44- 49 I6 cm-1 NIST NIST SRV fine structure energy level (1)
--------------------------------------------------------------------------------
Note (1): NIST results (Kramida et al., 2021, NIST Atomic Spectra database,
Version 5.9, National Institute of Standars and Technology, Gaitherburd, MD).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- i [1/85] Index
4- 25 A22 --- Level Level
28- 33 I6 cm-1 Present Present SRV fine structure energy level
35- 40 I6 cm-1 MCDF ?=- MCDF SRV fine structure energy level (1)
42- 47 I6 cm-1 NIST NIST SRV fine structure energy level (2)
49- 54 I6 cm-1 Exp ?=- Experimental SRV fine structure energy
level (3)
56- 57 I2 --- DMCDF ?=- Relative error between our calculations
and the results of MCDF
59- 60 I2 --- DNIST ?=- Relative error between our calculations
and the results of NIST
62 I1 --- DExp ?=- Relative error between our calculations
and the results of Exp
--------------------------------------------------------------------------------
Note (1): MCDF results (Charro & Martin, 1998A&AS..131..523C 1998A&AS..131..523C) using the GRASP
code developed by Grant et al. (1980, Comput. Phys. Commun, 21, 207) and
Grant (1989, in Wilson S. ed., Relativistic Atomic Structure Calculations.
Methods Computational Chemistry, Srpinger, Boston, MA).
Note (2): NIST results (Kramida et al. 2021)
Note (3): experimental results of Wyart & Artru (1989, Phys. Lett. A., 139 ,8).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- i [6/85] i level (from table 1)
5- 6 I2 --- j [1/63] j level (from table 1)
8- 16 E9.4 s-1 Aj Transition probability
18- 26 E9.4 --- gf Weighted oscillator strength
28- 37 F10.6 --- S Line strength
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- i [6/85] i level (from table 2)
4 I1 --- j [1/63] j level (from table 2)
6- 14 E9.4 s-1 Aj Transition probability
16- 24 E9.4 --- gf Weighted oscillator strength
26- 34 F9.6 --- S Line strength
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 28-Mar-2022