J/MNRAS/512/1598      SrV and SrVI transition probabilities       (Aloui+, 2022)

Sr V-VI line widths in hot white dwarf atmospheres. Aloui R., Elabidi H., Sahal-Brechot S. <Mon. Not. R. Astron. Soc. 512, 1598 (2022)> =2022MNRAS.512.1598A 2022MNRAS.512.1598A (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics Keywords: atomic data - line: profiles - stars: atmospheres - stars: individual: RE 0503-289 - white dwarfs Abstract: Missing Stark widths for 37 spectral lines of strontium ions (17 SrV lines and 20 SrVI lines) have been calculated using a quantum-mechanical method. Twenty-three spectral lines of SrV have been recently discovered, for the first time, in the ultraviolet spectrum of the hot white dwarf RE 0503-289. This recent discovery prompts us to calculate the Stark widths of the new lines. These calculations can fill the lack of the data base STARK-B and can be used to investigate the observed spectra in such stars. To perform the line broadening calculations, preliminary structure and collision calculations have been carried out using the sequence of the University College London codes (superstructure, distorted wave, and jajom). Results for the 37 lines are provided for different electron temperatures and at density Ne=1017cm-3. These results will enter the STARK-B data base, which is a node of the Virtual Atomic and Molecular Data Center. We hope that the obtained results will be useful for the non-local thermodynamic equilibrium modelling of stellar atmospheres. Description: We present Current spontaneous transition probabilities Aij, weighted oscillator strengths gf, and line strengths S for SrV and SrVI allowed transitions. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 49 85 Current SrV fine structure energy levels compared with the NIST results table2.dat 62 21 Current SrVI fine structure energy levels compared with MCDF, NIST and experimental results table3.dat 37 921 Current spontaneous transition probabilities Aij, weighted oscillator strengths gf, and line strengths S for SrV allowed transitions table4.dat 34 69 Current spontaneous transition probabilities Aij, weighted oscillator strengths gf, and line strengths S for SrVI allowed transitions -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- i [1/85] Index 4- 35 A32 --- Level Level 37- 42 I6 cm-1 Current Current SRV fine structure energy level 44- 49 I6 cm-1 NIST NIST SRV fine structure energy level (1) -------------------------------------------------------------------------------- Note (1): NIST results (Kramida et al., 2021, NIST Atomic Spectra database, Version 5.9, National Institute of Standars and Technology, Gaitherburd, MD). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- i [1/85] Index 4- 25 A22 --- Level Level 28- 33 I6 cm-1 Present Present SRV fine structure energy level 35- 40 I6 cm-1 MCDF ?=- MCDF SRV fine structure energy level (1) 42- 47 I6 cm-1 NIST NIST SRV fine structure energy level (2) 49- 54 I6 cm-1 Exp ?=- Experimental SRV fine structure energy level (3) 56- 57 I2 --- DMCDF ?=- Relative error between our calculations and the results of MCDF 59- 60 I2 --- DNIST ?=- Relative error between our calculations and the results of NIST 62 I1 --- DExp ?=- Relative error between our calculations and the results of Exp -------------------------------------------------------------------------------- Note (1): MCDF results (Charro & Martin, 1998A&AS..131..523C 1998A&AS..131..523C) using the GRASP code developed by Grant et al. (1980, Comput. Phys. Commun, 21, 207) and Grant (1989, in Wilson S. ed., Relativistic Atomic Structure Calculations. Methods Computational Chemistry, Srpinger, Boston, MA). Note (2): NIST results (Kramida et al. 2021) Note (3): experimental results of Wyart & Artru (1989, Phys. Lett. A., 139 ,8). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- i [6/85] i level (from table 1) 5- 6 I2 --- j [1/63] j level (from table 1) 8- 16 E9.4 s-1 Aj Transition probability 18- 26 E9.4 --- gf Weighted oscillator strength 28- 37 F10.6 --- S Line strength -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- i [6/85] i level (from table 2) 4 I1 --- j [1/63] j level (from table 2) 6- 14 E9.4 s-1 Aj Transition probability 16- 24 E9.4 --- gf Weighted oscillator strength 26- 34 F9.6 --- S Line strength -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 28-Mar-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line