J/MNRAS/513/1175 UV-to-FIR SED fitting study of dSFGs (Espino-Briones+, 2022)
Ultraviolet to far infrared self-consistent analysis of the stellar populations
of massive starburst galaxies at intermediate redshifts.
Espino-Briones N., Perez-Gonzalez P.G., Zamorano J., Rodriguez-Munoz L.
<Mon. Not. R. Astron. Soc. 513, 1175-1197 (2022)>
=2022MNRAS.513.1175E 2022MNRAS.513.1175E (SIMBAD/NED BibCode)
ADC_Keywords: Galaxy catalogs ; Positional data ; Redshifts ; Magnitudes ;
Star Forming Region ; Photometry ; Spectroscopy ; Ultraviolet ;
Optical ; Infrared ; Stars, masses ; Extinction ; Stars, ages
Keywords: galaxies: evolution - galaxies: photometry - galaxies: starburst -
infrared: galaxies
Abstract:
We study in detail the properties of the stellar populations of 111
massive [log(M*/M☉) => 10] dusty [far-infrared (FIR)-selected]
starburst (SFR/SFRMS > 2) galaxies at 0.7 < z < 1.2. For that purpose,
we use self-consistent methods that analyse the UV-to-FIR broad-band
observations in terms of the stellar light and dust re-emission with
energy-balance techniques. We find that the emission of our starburst
galaxies can be interpreted as a recent star formation episode
superimposed on a more evolved stellar population. On average, the
burst age is ∼80 Myr and its attenuation ∼2.4 mag. Assuming our
starburst galaxies at half their lifetimes, we infer a duration of the
starburst phase of ∼160 Myr. The median stellar mass and star
formation rate (SFR) are log (M*/M☉) ∼ 10.6 and ∼220
M☉/yr. Assuming this SFR and the inferred duration of the
starburst phase, the stellar mass added during this phase corresponds
to ∼40 per cent the median stellar mass of our sample. The
young-population age determines the position of our galaxies in the
M*-SFR plane. Galaxies located at the largest distances of the MS
present shorter young-population ages. The properties of the
underlying stellar population cannot be constrained accurately with
our broad-band data. We also discuss the impact of including the FIR
data and energy-balance techniques in the analysis of the properties
of the stellar populations in starburst galaxies.
Description:
The main goal of this paper is understanding the implications of the
starburst event in terms of the stellar population properties of
galaxies above the MS. For that purpose, we aim at determining such
properties at intermediate (z ∼ 1) redshift, an epoch when dSFGs
practically dominate the production of stars in the Universe. We use a
FIR-selected sample to ensure that we constrain the peak of the dust
emission in an accurate manner, and thus we select bonafide starburst
galaxies. These ∼100 dusty starbursts are introduced making publicly
available their UV-to-FIR photometry. Combining these multiwavelength
data, we fit observed UV-to-FIR SEDs with self-consistent models that
consider the obscuration of starlight and dust emission with
energy-balance techniques. We use two codes which manage this
self-consistent analysis to determine the stellar-population
properties of our dusty starburst sample, (i;e refer to section
Introduction).
As decribed in the section 2 Data description and reduction, this work
is based on the analysis of a sample of galaxies selected in the
Subaru/XMM-Newton Deep Survey field. We have collected a variety of
UV-to-FIR observations and the main characteristics such as Spitzer
data, Herschel data, GALEX, Subaru and UKIRT data. Next we merge all
these catalogues and proceed to photometric and spectroscopic data
extractions (i.e refer to section 3 Far infrared and merged catalogues
and section 4 Selection of a sample of dusty starbursts at z ∼ 1). We
restrict our work to galaxies in the redshift range 0.7 ≤ z ≤ 1.2.
We define such starbursts as dSFGs whose position in the SFR versus M*
plane is at least 1σ above the MS. Following criteria presented
in the section 4.2 Selection of dusty massive starburst galaxies and
construction of the final sample, we selected 93 dusty starburst
galaxies detected by MIPS and Herschel representing our main sample
and 18 starburst galaxies detected only by MIPS at 24 µm
constituting the complementary sample. In total, our final sample is
composed by 111 sources. The multiband photometry (AB magnitudes and
fluxes) data of our main and complementary sources are available in
table2ms.dat and table2cs.dat respectively.
Hereafter, we apply our method (i.e section 5 Self-consistent SED
modelling) to study the stellar population properties of the dSFGs. We
regroup physical property results from the Synthesizer and CIGALE SED
fitting code in table5ms.dat (main-sample) and in table5cs.dat
(complementary-sample). These tables contain IR luminosity, stellar
masses, stellar ages and SFRs.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2ms.dat 300 93 Dusty-starburst main-sample multiband photometry
table2cs.dat 300 18 Dusty-starburst complementary-sample multiband
photometry
table5ms.dat 172 93 Stellar population synthesis physical property
results for main-sample dusty starbursts
table5cs.dat 172 18 Stellar population synthesis physical property
results for complementary-sample dusty
starbursts
--------------------------------------------------------------------------------
See also:
J/ApJS/176/1 : Subaru/XMM-Newton deep survey (SXDS). II. (Furusawa+, 2008)
II/319 : UKIDSS-DR9 LAS, GCS and DXS Surveys (Lawrence+ 2012)
J/AJ/138/1261 : Spitzer/MIPS observations of the COSMOS field (Frayer+, 2009)
J/ApJ/675/234 : Stellar mass functions for galaxies 0<z<4
(Perez-Gonzalez+, 2008)
VIII/112 : Herschel/SPIRE point source catalog (HSPSC)
(Herschel team+, 2017)
VIII/106 : Herschel/PACS Point Source Catalogs (Herschel team, 2017)
II/335 : Revised catalog of GALEX UV sources (GUVcat_AIS GR6+7)
(Bianchi+ 2017)
Byte-by-byte Description of file: table2ms.dat table2cs.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- ID Spitzer/MIPS-24 ID designation (ID)
15- 23 F9.6 deg RAdeg Right ascension (J2000) (ra) (1)
25- 33 F9.6 deg DEdeg Declination (J2000) (dec) (1)
35- 40 F6.4 --- z Redshift (redshift) (2)
42- 47 F6.2 mag FUVmag ?=-99.00 FUV GALEX band at 153.9 nm observed AB
magnitude (FUV_mag) (3)
49- 54 F6.2 mag e_FUVmag ?=-99.00 Mean uncertainty on FUVmag (FUV_magerr)
(3)
56- 61 F6.2 mag NUVmag ?=-99.00 NUV GALEX band at 231.6 nm observed AB
magnitude (NUV_mag) (3)
63- 68 F6.2 mag e_NUVmag ?=-99.00 Mean uncertainty on NUVmag (NUV_magerr)
(3)
70- 75 F6.2 mag Bmag ?=-99.00 B Subaru band at 441.9 nm observed AB
magnitude (B_mag) (3)
77- 82 F6.2 mag e_Bmag ?=-99.00 Mean uncertainty on Bmag (B_magerr) (3)
84- 88 F5.2 mag Vmag ?=-99.00 V Subaru band at 545.6 nm observed AB
magnitude (V_mag) (3)
90- 93 F4.2 mag e_Vmag ?=-99.00 Mean uncertainty on Vmag (V_magerr) (3)
95- 99 F5.2 mag Rcmag ?=-99.00 Rc Subaru band at 651.8 nm observed
AB magnitude (R_mag) (3)
101- 104 F4.2 mag e_Rcmag ?=-99.00 Mean uncertainty on Rcmag (R_magerr)
(3)
106- 110 F5.2 mag imag ?=-99.00 I' Subaru band at 766.9 nm observed AB
magnitude (i_mag) (3)
112- 115 F4.2 mag e_imag ?=-99.00 Mean uncertainty on imag (i_magerr) (3)
117- 122 F6.2 mag zmag ?=-99.00 Z' Subaru band at 906.8 nm observed AB
magnitude (z_mag) (3)
124- 129 F6.2 mag e_zmag ?=-99.00 Mean uncertainty on zmag (z_magerr) (3)
131- 135 F5.2 mag Jmag ?=-99.00 J UKIRT/WFCAM band at 1.25 µm
observed AB magnitude (J_mag) (3)
137- 140 F4.2 mag e_Jmag ?=-99.00 Mean uncertainty on Jmag (J_magerr) (3)
142- 146 F5.2 mag Hmag ?=-99.00 H UKIRT/WFCAM band at 1.64 µm
observed AB magnitude (H_mag) (3)
148- 151 F4.2 mag e_Hmag ?=-99.00 Mean uncertainty on Hmag (H_magerr) (3)
153- 157 F5.2 mag Kmag ?=-99.00 K UKIRT/WFCAM band at 2.21 µm
observed AB magnitude (H_magerr) (3)
159- 162 F4.2 mag e_Kmag ?=-99.00 Mean uncertainty on Kmag (K_magerr) (3)
164- 168 F5.2 mag 3.6mag ?=-99.00 3.6 µm IRAC/Spitzer band at
3.56 µm observed AB magnitude (I1_mag) (3)
170- 173 F4.2 mag e_3.6mag ?=-99.00 Mean uncertainty on 3.6mag (I1_magerr)
(3)
175- 179 F5.2 mag 4.5mag ?=-99.00 4.5 µm IRAC/Spitzer band at
4.50 µm observed AB magnitude (I2_mag) (3)
181- 184 F4.2 mag e_4.5mag ?=-99.00 Mean uncertainty on 4.5mag (I2_magerr)
(3)
186- 190 F5.2 mag 5.8mag ?=-99.00 5.8 µm IRAC/Spitzer band at
5.74 µm observed AB magnitude (I3_mag) (3)
192- 195 F4.2 mag e_5.8mag ?=-99.00 Mean uncertainty on 5.8mag (I3_magerr)
(3)
197- 201 F5.2 mag 8.0mag ?=-99.00 8.0 µm IRAC/Spitzer band at
7.93 µm observed AB magnitude (I4_mag) (3)
203- 206 F4.2 mag e_8.0mag ?=-99.00 Mean uncertainty on 8.0mag (I4_magerr)
(3)
208- 211 F4.2 mJy S24 ?=-99.00 Spitzer/MIPS 24um band flux density at
23.8 µm (S24)
213- 216 F4.2 mJy e_S24 ?=-99.00 MIPS 24um flux uncertainty (dS24)
218- 223 F6.2 mJy S70 ?=-99.00 Spitzer/MIPS 70um band flux density at
72.5 µm (S70)
225- 230 F6.2 mJy e_S70 ?=-99.00 MIPS 70um flux uncertainty (dS70)
232- 237 F6.2 mJy S100 ?=-99.00 PACS/Herschel 100um band flux density
at 102.4 µm (S100)
239- 244 F6.2 mJy e_S100 ?=-99.00 PACS 100um flux uncertainty (dS100)
246- 251 F6.2 mJy S160 ?=-99.00 PACS/Herschel 160um band flux density
at 165.6 µm (S160)
253- 258 F6.2 mJy e_S160 ?=-99.00 PACS 160um flux uncertainty (dS160)
260- 265 F6.2 mJy S250 ?=-99.00 SPIRE/Herschel 250um band flux density
at 253.2 µm (S250)
267- 272 F6.2 mJy e_S250 ?=-99.00 SPIRE 250um flux uncertainty (dS250)
274- 279 F6.2 mJy S350 ?=-99.00 SPIRE/Herschel 350um band flux density
at 355.9 µm (S350)
281- 286 F6.2 mJy e_S350 ?=-99.00 SPIRE 350um flux uncertainty (dS350)
288- 293 F6.2 mJy S500 ?=-99.00 SPIRE/Herschel 500um band flux
uncertainty at 511.3 µm (S500)
295- 300 F6.2 mJy e_S500 ?=-99.00 SPIRE 500um flux uncertainty (S500)
--------------------------------------------------------------------------------
Note (1): R-band detection centroids of the source(s) associated to the MIPS-24
detection using the Rainbow code.
Note (2): Photometric or specstrocopic redshift when available as fully
explained in the section 4.1 Estimations of photometric redshifts,
stellar masses, and SFRs and in section 4.3 Closing remarks of the
sample.
Note (3): Derived with the Rainbow code using the Kron elliptical aperture
enclosing the optical associations, -99 indicates no coverage.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5ms.dat table5cs.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- ID Spitzer/MIPS-24 ID designation (ID)
15- 20 F6.4 --- z Redshift (redshift) (1)
22- 26 F5.2 [Lsun] logLtir Total IR luminosity (Ltir) (2)
28- 31 F4.2 [Lsun] e_logLtir Mean uncertainty of logLtir (dLtir)
33- 36 F4.1 [Msun] logM*sy Stellar Mass derived with Synthesizer
code (Ms_sy)
38- 40 F3.1 [Msun] e_logM*sy Mean uncertainty of logM*sy (dMs_sy)
42- 45 F4.1 [Msun] logM*ci Stellar Mass derived with CIGALE code
(Ms_ci)
47- 49 F3.1 [Msun] e_logM*ci Mean uncertainty of logM*ci (dMs_ci)
51- 54 F4.2 [Msun/yr] logSFRsy SFR averaged over 10 Myr derived with
Synthesizer code (SFR_sy)
56- 59 F4.2 [Msun/yr] e_logSFRsy Mean uncertainty of logSFRsy (dSFR_sy)
61- 64 F4.2 [Msun/yr] logSFRci SFR averaged over 10 Myr derived with
CIGALE code (SFR_ci)
66- 69 F4.2 [Msun/yr] e_logSFRci Mean uncertainty of logSFRci (dSFR_ci)
71- 73 F3.1 mag AVysy The attenuation in V band of the young
population AyouV derived with
Synthesizer code (Avy_sy)
75- 77 F3.1 mag e_AVysy Mean uncertainty of AVysy (dAvy_sy)
79- 81 F3.1 mag AVyci The attenuation in V band of the young
population AyouV derived with CIGALE
code (Avy_ci)
83- 85 F3.1 mag e_AVyci Mean uncertainty of AVyci (dAvy_ci)
87- 89 I3 Myr Ageysy Estimated age of the young population
tyou derived with Synthesizer code
(Agy_sy)
91- 93 I3 Myr e_Ageysy Mean uncertainty of Ageysy (dAgy_sy)
95- 97 I3 Myr Ageyci Estimated age of the young population
tyou derived with CIGALE code (Agy_ci)
99- 101 I3 Myr e_Ageyci Mean uncertainty of Ageyci (dAgy_ci)
103- 106 F4.1 Gyr Tauysy Young population e-folding time derived
with Synthesizer code (Tay_sy)
108- 110 F3.1 Gyr e_Tauysy Mean uncertainty of Tauysy (dTay_sy)
112- 113 I2 --- bsy Burst intensity as M*you/M* derived
with Synthesizer code (bu_sy)
115- 116 I2 --- e_bsy Mean uncertainty of bsy (dbu_sy)
118- 119 I2 --- bci Burst intensity as M*you/M* derived
with CIGALE code (bu_ci)
121- 122 I2 --- e_bci Mean uncertainty of bci (dbu_ci)
124- 126 F3.1 mag AVosy The attenuation in V band of the old
population AoldV derived with
Synthesizer code (Avo_sy)
128- 130 F3.1 mag e_AVosy Mean uncertainty of AVosy (dAvo_sy)
132- 134 F3.1 mag AVoci The attenuation in V band of the old
population AoldV derived with CIGALE
code (Avo_ci)
136- 138 F3.1 mag e_AVoci Mean uncertainty of AVoci (dAvo_ci)
140- 142 F3.1 Gyr Ageosy Estimated age of the old population
told derived with Synthesizer code
(Ago_sy)
144- 146 F3.1 Gyr e_Ageosy Mean uncertainty of Ageosy (dAgo_sy)
148- 150 F3.1 Gyr Ageoci Estimated age of the old population
told derived with CIGALE code (Ago_ci)
152- 154 F3.1 Gyr e_Ageoci Mean uncertainty of Ageoci (dAgo_ci)
156- 158 I3 Myr Tauosy Old population e-folding time derived
with Synthesizer code (Tao_sy)
160- 162 I3 Myr e_Tauosy Mean uncertainty of Tauosy (dTao_sy)
164- 167 I4 Myr Tauoci Old population e-folding time derived
with CIGALE code (Tao_ci)
169- 172 I4 Myr e_Tauoci Mean uncertainty of Tauoci (dTao_ci)
--------------------------------------------------------------------------------
Note (1): Photometric or specstrocopic redshift when available as fully
explained in the section 4.1 Estimations of photometric redshifts,
stellar masses, and SFRs and in section 4.3 Closing remarks of the
sample.
Note (2): As explained in the section 4.2 Estimations of photometric redshifts,
stellar masses, and SFRs, LTIR is derived from Spitzer and Herschel
data by computing the median value of the luminosities provided by the
best-fitting templates extracted from the libraries of dust emission
models.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Luc Trabelsi [CDS] 11-Dec-2024