J/MNRAS/513/1429  MOBSTER. VI. Radio magnetospheres of hot stars (Shultz+, 2022)

MOBSTER - VI. The crucial influence of rotation on the radio magnetospheres of hot stars. Shultz M.E., Owocki S.P., ud-Doula A., Biswas A., Bohlender D., Chandra P., Das B., David-Uraz A., Khalack V., Kochukhov O., Landstreet J.D., Leto P., Monin D., Neiner C., Rivinius T., Wade G.A. <Mon. Not. R. Astron. Soc. 513, 1429 (2022)> =2022MNRAS.513.1429S 2022MNRAS.513.1429S (SIMBAD/NED BibCode)
ADC_Keywords: Stars, early-type ; Magnetic fields Keywords: magnetic reconnection - stars: early-type - stars: magnetic fields - stars: rotation - radio continuum: stars Abstract: Numerous magnetic hot stars exhibit gyrosynchrotron radio emission. The source electrons were previously thought to be accelerated to relativistic velocities in the current sheet formed in the middle magnetosphere by the wind opening magnetic field lines. However, a lack of dependence of radio luminosity on the wind power, and a strong dependence on rotation, has recently challenged this paradigm. We have collected all radio measurements of magnetic early-type stars available in the literature. When constraints on the magnetic field and/or the rotational period are not available, we have determined these using previously unpublished spectropolarimetric and photometric data. The result is the largest sample of magnetic stars with radio observations that has yet been analysed: 131 stars with rotational and magnetic constraints, of which 50 are radio-bright. We confirm an obvious dependence of gyrosynchrotron radiation on rotation, and furthermore find that accounting for rotation neatly separates stars with and without detected radio emission. There is a close correlation between Hα emission strength and radio luminosity. These factors suggest that radio emission may be explained by the same mechanism responsible for Hα emission from centrifugal magnetospheres, i.e. centrifugal breakout (CBO), however, while the Hα-emitting magnetosphere probes the cool plasma before breakout, radio emission is a consequence of electrons accelerated in centrifugally driven magnetic reconnection. Description: By combining both published and unpublished radio observations, published rotational and magnetic data, and new determinations of magnetic models and rotational periods via space photometry and previously unpublished high- and low-resolution spectropolarimetry, we have conducted the largest analysis of the gyrosynchrotron emission properties of magnetic early-type stars undertaken to date. Tables containing the stellar, rotational, and magnetic parameters and radio luminosities, as well as tables of longitudinal magnetic field measurements. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 177 131 Stellar, rotational, magnetic and radio parameters list.dat 26 40 List of stars with magnetic measurements in tables A2 and A3 tablea2.dat 63 75 Magnetic measurements with ESPaDOnS and Narval tablea3.dat 35 252 Magnetic measurements with DAO refs.dat 69 130 References for Table 1 -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Star Name of star 12- 15 F4.2 [Lsun] logL Bolometric luminosity 17- 20 F4.2 [Lsun] e_logL Luminosity error 22- 25 F4.1 kK Teff Effective temperature 28- 30 F3.1 kK e_Teff Effective temperature error 32- 34 I3 --- r_logL Reference for stellar parameters 36- 40 F5.2 Msun Mass Mass 43- 46 F4.2 Msun e_Mass Mass error 48- 50 I3 km/s vsini ? Projected rotational velocity 52- 54 I3 --- r_vsini ? Reference for vsini 56- 64 F9.3 d Prot ? Rotation period 66- 76 A11 --- r_Prot Reference for rotation period 78- 79 I2 deg beta ? Magnetic obliquity angle 81- 82 I2 deg E_beta ? Upper uncertainty in obliquity angle 84- 85 I2 deg e_beta ? Lower uncertainty in obliquity angle 88- 89 A2 --- l_Bd [LL UL] Limit indicator for magnetic field (LL=lower limit, UL=upper limit) 91- 96 F6.3 kG Bd Surface magnetic dipole strength 98-103 F6.3 kG E_Bd ? Upper uncertainty in surface dipole strength 106-110 F5.3 kG e_Bd ? Lower uncertainty in surface dipole strength 112-134 A23 --- r_Bd Reference for magnetic parameters 137-138 A2 --- l_Lrad [UL] Detection flag for radio data (UL=upper limit) 140-144 F5.2 Lsun Lrad Radio luminosity 146-149 F4.2 Lsun e_Lrad ? Radio luminosity uncertainty 151-177 A27 --- r_Lrad Reference for radio data -------------------------------------------------------------------------------- Byte-by-byte Description of file: list.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Star Name of star 12- 13 I2 --- N Number of magnetic measurements 16- 26 A11 --- FileName Name of the table with measurements -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Star Name of star 11 A1 --- Inst Instrument (E=ESPaDOnS,N=Narval) 13- 25 F13.5 d HJD Heliocentric Julian Date 28- 33 F6.1 G Bz Longitudinal magnetic field 37- 41 F5.1 G e_Bz Longitudinal magnetic field error 43- 44 A2 --- DFV Stokes V detection flag (1) 47- 52 F6.1 G Nz Null field 56- 60 F5.1 G e_Nz Null field error 62- 63 A2 --- DFN Null detection flag (1) -------------------------------------------------------------------------------- Note (1): Flag as follows: DD = Definite Detection MD = Marginal Detection ND = Non-detection -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Star Name of star 11- 23 F13.5 d HJD Heliocentric Julian Date 25- 29 I5 G Bz Longitudinal magnetic field 32- 35 I4 G e_Bz Longitudinal magnetic field error -------------------------------------------------------------------------------- Byte-by-byte Description of file: refs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- Ref Reference key for references in Table 1 5- 23 A19 --- BibCode ADS/CDS bibcode 25- 45 A21 --- Aut Author's name 46- 69 A24 --- Com Comments -------------------------------------------------------------------------------- Acknowledgements: Matt Shultz, matt.shultz(at)gmail.com References: David-Uraz et al., Paper I 2019MNRAS.487..304D 2019MNRAS.487..304D Sikora et al., Paper II 2019MNRAS.487.4695S 2019MNRAS.487.4695S Shultz et al., Paper III 2019MNRAS.490.4154S 2019MNRAS.490.4154S David-Uraz et al., Paper IV 2021MNRAS.504.4841D 2021MNRAS.504.4841D Shultz et al., Paper V 2021MNRAS.504.4850S 2021MNRAS.504.4850S
(End) Patricia Vannier [CDS] 18-May-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line