J/MNRAS/513/2719    Stellar parameters study with SED fit algo    (Vines+, 2022)

ARIADNE measuring accurate and precise stellar parameters through SED fitting. Vines J.I., Jenkins J.S. <Mon. Not. R. Astron. Soc. 513, 2719-2731 (2022)> =2022MNRAS.513.2719V 2022MNRAS.513.2719V (SIMBAD/NED BibCode)
ADC_Keywords: Stars, A-type ; Stars, M-type ; Stars, dwarfs ; Interferometry ; Photometry ; Spectroscopy ; Models ; Effective temperatures ; Abundances, [Fe/H] ; Stars, diameters ; Infrared ; Ultraviolet ; Optical ; Millimetric/submm sources ; Stars, masses ; Extinction Keywords: methods: data analysis - stars: atmospheres - stars: fundamental parameters - software: data analysis - software: public release Abstract: Accurately measuring stellar parameters is a key goal to increase our understanding of the observable Universe. However, current methods are limited by many factors, in particular, the biases and physical assumptions that are the basis for the underlying evolutionary or atmospheric models, those that these methods rely upon. Here, we introduce our code spectrAl eneRgy dIstribution bAyesian moDel averagiNg fittEr (ariadne), which tackles this problem by using Bayesian Model Averaging to incorporate the information from all stellar models to arrive at accurate and precise values. This code uses spectral energy distribution fitting methods, combined with precise Gaia distances, to measure the temperature, logg, [Fe/H], AV, and radius of a star. When compared with interferometrically measured radii ariadne produces values in excellent agreement across a wide range of stellar parameters, with a mean fractional difference of only 0.001 ± 0.070. We currently incorporate six different models, and in some cases we find significant offsets between them, reaching differences of up to 550 K and 0.6 R in temperature and radius, respectively. For example, such offsets in stellar radius would give rise to a difference in planetary radius of 60 per cent, negating homogeneity when combining results from different models. We also find a trend for stars smaller than 0.4-0.5 R, which shows more work needs to be done to better model these stars, even though the overall extent is within the uncertainties of the interferometric measurements. We advocate for the use of ariadne to provide improved bulk parameters of nearby A to M dwarfs for future studies. Description: We aim to address the problem of systematic biases that are introduced in stellar parameters measurements by employing different models as part of our Bayesian Model Averaging (BMA) approach that we have implemented in our package ARIADNE. We describe our method to include the information from all models when calculating stellar parameters, maximizing our accuracy and precision, (i.e see Introduction and 2 SED modelling with ARIADNE sections). In this work, we selected a list of interferometrically observed stars, as these can provide direct measurements of the radius through the limb-darkened angular diameter and parallax distance. The selected stars cover the spectral range from A to M dwarfs, with a sub-sample of evolved stars allowing us to probe larger radii and masses, and lower logg values. In addition to compiling interferometric radii and effective temperatures, we also searched the literature for logg and metallicity values to compare against our outputs. In total we compiled 135 stars with radii and effective temperatures ranging from 0.15 to 16.57 R and 2940 to 9377 K, respectively. We list the selected stars with their respective references (see refs.dat table) in table3.dat, along with their associated magnitudes in table4.dat, (i.e see section 3 Benchmark stars). Hereafter, as shown in the 4 Results we provide fitting stellar parameters for our 135 selected stars. We have compiled all of ARIADNE's outputs in table5.dat. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table3.dat 101 135 Selected stars with stellar properties and their respective references table4.dat 277 135 Apparent magnitudes of the selected stars table5.dat 517 135 ARIADNE outputs results for our selected stars sample refs.dat 70 52 References of the selected stars -------------------------------------------------------------------------------- See also: IV/34 : K2 Ecliptic Plane Input Catalog (EPIC) (Huber+, 2017) IV/38 : TESS Input Catalog - v8.0 (TIC-8) (Stassun+, 2019) IV/39 : TESS Input Catalog version 8.2 (TIC v8.2) (Paegert+, 2021) J/ApJ/831/64 : Mass-metallicity relation for giant planets (Thorngren+, 2016) I/345 : Gaia DR2 (Gaia Collaboration, 2018) II/246 : 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) II/335 : Revised catalog of GALEX UV sources (GUVcat_AIS GR6+7) (Bianchi+ 2017) V/147 : The SDSS Photometric Catalogue, Release 12 (Alam+, 2015) II/328 : AllWISE Data Release (Cutri+ 2013) https://github.com/jvines/astroARIADNE : ARIADNE algorithm github home Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name Star's name (Name) 10- 13 I4 K Teff Effective temperature (Teff) 15- 17 I3 K e_Teff Mean error on Teff (e_Teff) 19- 23 F5.3 [cm/s2] logg ? Surface gravity (logg) 25- 29 F5.3 [cm/s2] e_logg ? Mean error on logg (e_logg) 31- 36 F6.3 [-] [Fe/H] ? Iron to hydrogen abundance ratio (metal) 38- 41 F4.2 [-] e_[Fe/H] ? Mean error on [Fe/H] (e_metal) 43- 48 F6.4 mas ThetaLD Limb darkened angular diameter corresponding to the apparent size of the star (ad) 50- 55 F6.4 mas e_ThetaLD Mean error on ThetaLD (e_ad) 57- 63 F7.4 Rsun R* Star's radius (rad) 65- 70 F6.4 Rsun e_R* Mean error of R* (e_rad) 72- 90 F19.16 [-] logRHK' ? The logarithm chromospheric flux ratio (logRHK) (1) 92- 101 A10 --- Ref Star data references in refs.dat file (refs) -------------------------------------------------------------------------------- Note (1): The logarithm chromospheric flux ratio is defined as log(F'HK/Fbol) where F'HK is the total chromospheric flux contribution of near ultraviolet Ca II H and Ca II K lines and Fbol bolometric flux of the star used to normalize R'HK to have a dimensionless quantity. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name Star's name (Name) 10- 14 F5.3 mag Hmag ? 2MASS H-band apparent magnitude at 1.662 mum (2MASS_H) 16- 20 F5.3 mag e_Hmag ? Mean error of Hmag (2MASSHe) 22- 26 F5.3 mag Jmag ? 2MASS J-band apparent magnitude at 1.235 mum (2MASS_J) 28- 32 F5.3 mag e_Jmag ? Mean error of Jmag (2MASSJe) 34- 38 F5.3 mag Ksmag ? 2MASS Ks-band apparent magnitude at 2.159 mum (2MASS_Ks) 40- 44 F5.3 mag e_Ksmag ? Mean error of Ksmag (2MASSKse) 46- 51 F6.3 mag FUVmag ? GALEX FUV-band apparent magnitude from 134.4 nm to 178.6 nm centered on 153.8 nm (GALEX_FUV) 53- 57 F5.3 mag e_FUVmag ? Mean error of FUVmag (GALEXFUVe) 59- 64 F6.3 mag NUVmag ? GALEX NUV-band apparent magnitude from 177.1 nm to 283.1 nm centered on 231.5 nm (GALEX_NUV) 66- 70 F5.3 mag e_NUVmag ? Mean error of NUVmag (GALEXNUVe) 72- 77 F6.3 mag Bmag Johnson B-band apparent magnitude at 440 nm (GROUNDJOHNSONB) 79- 84 F6.4 mag e_Bmag Mean error of Bmag (GROUNDJOHNSONB_e) 86- 91 F6.3 mag Umag ? Johnson U-band apparent magnitude at 365 nm (GROUNDJOHNSONU) 93- 98 F6.4 mag e_Umag ? Mean error of Umag (GROUNDJOHNSONU_e) 100- 105 F6.3 mag Vmag Johnson V-band apparent magnitude at 550 nm (GROUNDJOHNSONV) 107- 111 F5.3 mag e_Vmag Mean error of Vmag (GROUNDJOHNSONV_e) 113- 119 F7.4 mag BPmag Gaia DR2 BP-band apparent magnitude from 325 nm to 680 nm (GaiaDR2v2_BP) 121- 126 F6.4 mag e_BPmag Mean error of BPmag (GaiaDR2v2BPe) 128- 133 F6.4 mag Gmag Gaia DR2 G-band apparent magnitude from 325 nm to 1050 nm (GaiaDR2v2_G) 135- 140 F6.4 mag e_Gmag Mean error of Gmag (GaiaDR2v2Ge) 142- 147 F6.4 mag RPmag Gaia DR2 RP-band apparent magnitude from 610 nm to 1050 nm (GaiaDR2v2_RP) 149- 154 F6.4 mag e_RPmag Mean error of RPmag (GaiaDR2v2RPe) 156- 161 F6.3 mag gmag ? SDSS g-band apparent magnitude at 477 nm (SDSS_g) 163- 167 F5.3 mag e_gmag ? Mean error of gmag (SDSSge) 169- 173 F5.3 mag imag ? SDSS i-band apparent magnitude at 762.5 nm (SDSS_i) 175- 179 F5.3 mag e_imag ? Mean error of imag (SDSSie) 181- 186 F6.3 mag rmag ? SDSS r-band apparent magnitude at 623.1 nm (SDSS_r) 188- 192 F5.3 mag e_rmag ? Mean error of rmag (SDSSre) 194- 198 F5.3 mag 3.6mag ? Spitzer/IRAC 3.6um band apparent magnitude (SPITZERIRAC36) 200- 203 F4.2 mag e_3.6mag ? Mean error of 3.6mag (SPITZERIRAC36_e) 205- 208 F4.2 mag 4.5mag ? Spitzer/IRAC 4.5um band apparent magnitude (SPITZERIRAC45) 210- 213 F4.2 mag e_4.5mag ? Mean error of 4.5mag (SPITZERIRAC45_e) 215- 220 F6.4 mag TESSmag ? TESS apparent magnitude from 600 to 1000 nm centered on 800 nm (TESS) 222- 227 F6.4 mag e_TESSmag ? Mean error of TESSmag (TESS_e) 229- 234 F6.3 mag BTmag ? Reddenned Tycho B apparent magnitude (TYCHOBMvB) 236- 240 F5.3 mag e_BTmag ? Mean error of BTmag (TYCHOBMvB_e) 242- 247 F6.3 mag VTmag ? Reddenned Tycho V apparent magnitude (TYCHOVMvB) 249- 253 F5.3 mag e_VTmag ? Mean error of VTmag (TYCHOVMvB_e) 255- 259 F5.3 mag W1mag ? WISE W1-band apparent magnitude at 3.4 mum (WISERSRW1) 261- 265 F5.3 mag e_W1mag ? Mean error of W1mag (WISERSRW1_e) 267- 271 F5.3 mag W2mag ? WISE W2-band apparent magnitude at 4.6 mum (WISERSRW2) 273- 277 F5.3 mag e_W2mag ? Mean error of W2mag (WISERSRW2_e) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name Star's name (Name) 10- 27 F18.13 K Teff Effective temperature (Teff) 29- 47 F19.16 K E_Teff Upper uncertainty of Teff (Teff_up) 49- 68 F20.16 K e_Teff Lower uncertainty of Teff (Teff_lo) 70- 87 F18.16 [cm/s2] logg Logarithm of surface gravity (logg) 89- 108 F20.18 [cm/s2] E_logg Upper uncertainty of logg (logg_up) 110- 129 F20.18 [cm/s2] e_logg Lower uncertainty of logg (logg_lo) 131- 152 F22.19 [Sun] [Fe/H] Iron to hydrogen abundance ratio (metal) 154- 173 F20.18 [Sun] E_[Fe/H] Upper uncertainty of [Fe/H] (metal_up) 175- 194 F20.18 [Sun] e_[Fe/H] Lower uncertainty of [Fe/H] (metal_lo) 196- 215 F20.17 Rsun R* Star's radius (radius) 217- 237 F21.19 Rsun E_R* Upper uncertainty of R* (radius_up) 239- 259 F21.19 Rsun e_R* Lower uncertainty of R* (radius_lo) 261- 279 F19.17 Msun Mg Gravitational star's mass (grav_mass) 281- 300 F20.18 Msun E_Mg Upper uncertainty of Mg (gravmassup) 302- 321 F20.18 Msun e_Mg Lower uncertainty of Mg (gravmasslo) 323- 341 F19.17 Msun Miso Star's mass obtained from isochrones method (iso_mass) (1) 343- 364 F22.20 Msun E_Miso Upper uncertainty of Miso (isomassup) 366- 385 F20.18 Msun e_Miso Lower uncertainty of Miso (isomasslo) 387- 405 F19.17 mas ThetaLD Limb darkened angular diameter corresponding to the apparent size of the star (angulardiam) 407- 427 F21.19 mas E_ThetaLD Upper uncertainty of ThetaLD (angulardiam_up) 429- 449 F21.19 mas e_ThetaLD Lower uncertainty of ThetaLD (angulardiam_lo) 451- 471 F21.19 mag AV Extinction coefficient in Johnson V-band (Av) 473- 495 F23.20 mag E_AV [] Upper uncertainty of Av (Av_up) 497- 517 F21.19 mag e_AV Lower uncertainty of Av (Av_lo) -------------------------------------------------------------------------------- Note (1): As mentionned in the section 4.5 Mass calculation, the second method involves interpolating MIST (MESA Isochrones & Stellar Tracks isochrones) isochrones to the previously fitted stellar parameters and broad-band photometry, however, this option is only available when doing the Bayesian Model Averaging procedure ARIADNE and not for individual model fitting. -------------------------------------------------------------------------------- Byte-by-byte Description of file: refs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Ref Reference code 4- 22 A19 --- BibCode BibCode 24- 45 A22 --- Aut Author's name 47- 67 A21 --- Com Catalogue reference 69- 70 I2 --- Nbr Number of stars in our sample -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Luc Trabelsi [CDS] 18-Dec-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line