J/MNRAS/514/164  Optical variability of 190 Quasars in S82 region (Stone+, 2022)

Optical variability of quasars with 20-yr photometric light curves. Stone Z., Shen Y., Burke C.J., Chen Y.-C., Yang Q., Liu X., Gruendl R.A., Adamow M., Andrade-oliveira F., Annis J., Bacon D., Bertin E., Bocquet S., Brooks D., Burke D.L., Carnero Rosell A., Carrasco Kind M., Carretero J., Da Costa L.N., Pereira M.E.S., De Vicente J., Desai S., Diehl H.T., Doel P., Ferrero I., Friedel D.N., Frieman J., Garcia-Bellido J., Gaztanaga E., Gruen D., Gutierrez G., Hinton S.R., Hollowood D.L., Honscheid K., James D.J., Kuehn K., Kuropatkin N., Lidman C., Maia M.A.G., Menanteau F., Miquel R., Morgan R., Paz-Chinchon F., Pieres A., Plazas Malagon A.A., Rodriguez-Monroy M., Sanchez E., Scarpine V., Serrano S., Sevilla-Noarbe I., Smith M., Suchyta E., Swanson M.E.C., Tarle G., To C., (the Des Collaboration) <Mon. Not. R. Astron. Soc. 514, 164-184 (2022)> =2022MNRAS.514..164S 2022MNRAS.514..164S (SIMBAD/NED BibCode)
ADC_Keywords: QSOs ; Black holes ; Optical ; Photometry ; Positional data ; Models Keywords: surveys - quasars: general - quasars: supermassive black holes Abstract: We study the optical gri photometric variability of a sample of 190 quasars within the SDSS Stripe 82 region that have long-term photometric coverage during ∼1998-2020 with SDSS, PanSTARRS-1, the Dark Energy Survey, and dedicated follow- up monitoring with Blanco 4m/DECam. With on average ∼200 nightly epochs per quasar per filter band, we improve the parameter constraints from a Damped Random Walk (DRW) model fit to the light curves over previous studies with 10-15 yr baselines and ≲ 100 epochs. We find that the average damping time-scale τDRW continues to rise with increased baseline, reaching a median value of ∼750 d (g band) in the rest frame of these quasars using the 20-yr light curves. Some quasars may have gradual, long-term trends in their light curves, suggesting that either the DRW fit requires very long baselines to converge, or that the underlying variability is more complex than a single DRW process for these quasars. Using a subset of quasars with better-constrained τDRW (less than 20 per cent of the baseline), we confirm a weak wavelength dependence of τDRW ∝ λ0.51±0.20. We further quantify optical variability of these quasars over days to decades time-scales using structure function (SF) and power spectrum density (PSD) analyses. The SF and PSD measurements qualitatively confirm the measured (hundreds of days) damping time-scales from the DRW fits. However, the ensemble PSD is steeper than that of a DRW on time-scales less than ∼ a month for these luminous quasars, and this second break point correlates with the longer DRW damping time-scale. Description: The optical photometric (continuum) variability of quasars encodes critical information about physical processes within the accretion disc of a rapidly accreting supermassive black hole (SMBH) that primarily emits in the rest-frame UV through optical. There has been significant progress in the past few decades in quantifying the observed optical variability of quasars with increasing sample sizes and light-curve quality. The main purpose of this work is to study optical continuum variability of a sample of quasars with a more extended 20-yr baseline. This sample represents one of the best-quality light-curve data sets to study quasar variability, with hundreds of epochs from SDSS, PS1 and the high-cadence/high-S/N monitoring from DES, as well as our dedicated follow-up photometric monitoring with DECam on the CTIO-4m Blanco telescope. We will improve the DRW measurements using these extended light curves and quantify the general optical variability properties with SF and PSD analyses, (i.e section 1 Introduction). To study optical quasar variability with long-term light curves, we utilize quasars identified in the SDSS Stripe 82 region (S82), a nearly 300 deg2 stripe along the celestial equator, imaged by SDSS from ∼1998 to 2007. In this work, we use the combined light-curve data from SDSS, PS1, DES, and DECam imaging for 190 spectroscopically confirmed quasars in SDSS that are within the two DES-deep fields in S82. These quasars are all within the SDSS DR7 quasar catalogue, with derived physical properties such as bolometric luminosities and black hole masses. All of these quasars have observations in the gri bands for all surveys, so we focus on these three bands for multiwavelength variability. We regroup all SF,PSD and DRW analysis results and raw data in tables table1.dat, table1.fits and table2.fits, (i.e see section 2 for Data and sections 3.1,3.2,3.3 for model fits). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 1014 190 Properties of variability for our quasars sample in SDSS Stripe 82 region table1.fits 2880 9414 All properties of variability, light curves, SF, CARMA model and PSD in g,r,i SDSS bands table2.fits 2880 366 Compiling ensemble SF and PSD measurements from 10 subsets of our full quasar sample -------------------------------------------------------------------------------- See also: J/ApJ/698/895 : Variations in QSOs optical flux (Kelly+, 2009) J/ApJ/854/160 : SDSS and DES long-term extreme variability QSOs (Rumbaugh+, 2018) J/ApJ/753/106 : Quasar variability with SDSS and POSS imaging (MacLeod+, 2012) J/MNRAS/499/6053 : Indiv. opt. variability of AGNs from MEXSAS2 (Laurenti+, 2020) J/A+A/627/A33 : Optically variable AGN in COSMOS field (De Cicco+, 2019) J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011) J/ApJS/241/34 : The SDSS Reverberation Mapping (SDSS-RM) project (Shen+, 2019) II/349 : The Pan-STARRS release 1 (PS1) Survey - DR1 (Chambers+,2016) II/371 : The Dark Energy Survey (DES): Data Release 2 (Abbott+, 2021) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 I7 --- ID Database ID for each quasar (DBID) (1) 9- 17 F9.6 deg RAdeg Right ascension (J2000) (RA) 19- 27 F9.6 deg DEdeg Declination (J2000) (DEC) 29- 39 F11.9 --- z Redshift (Z) 41- 52 F12.9 [Msun] log(Mbh) Logarithm of the black hole mass (logMBH) 54- 64 F11.9 [Msun] e_log(Mbh) Error of the black hole mass log(Mbh) (logMBH_ERR) 66- 83 F18.15 [10-7W] log(Lbol) Logarithm of the bolometric luminosity (log_LBOL) 85- 105 F21.19 [10-7W] e_log(Lbol) Error of the bolometric luminosity (logLBOLERR) 107- 124 F18.16 [d] log(tauObsg) Logarithm of τDRW damping time-scale of the DRW light curve model fit in the SDSS g-band observed frame (logTAUOBS_g) 126- 144 F19.17 [d] e_log(tauObsg) Lower error of log(tauObsg) (logTAUOBSgERR_L) 146- 164 F19.17 [d] E_log(tauObsg) Upper error of log(tauObsg) (logTAUOBSgERR_U) 166- 183 F18.16 [d] log(tauRestg) Logarithm of τDRW in the SDSS g-band rest frame (logTAUREST_g) 185- 203 F19.17 [d] e_log(tauRestg) Lower error of log(tauRestg) (logTAURESTgERR_L) 205- 223 F19.17 [d] E_log(tauRestg) Upper error of log(tauRestg) (logTAURESTgERR_U) 225- 244 F20.17 mag log(SigDRWg) The logarithm of σDRW long-term standard deviation of variability in SDSS g-band (logSIGMAg) 246- 264 F19.17 mag e_log(SigDRWg) Lower error of log(SigDRWg) (logSIGMAgERRL) 266- 284 F19.17 mag E_log(SigDRWg) Upper error of log(SigDRWg) (logSIGMAgERRU) 286- 304 F19.16 mag log(Signg) Logarithm of Jitter noise term in SDSS g-band (logJITTERg) (2) 306- 325 F20.18 mag e_log(Signg) Lower error of log(Signg) (logJITTERgERRL) 327- 346 F20.18 mag E_log(Signg) Upper error of log(Signg) (logJITTERgERRU) 348- 367 F20.18 mag RMSg The intrinsic RMS variability in the SDSS g-band σ0,g (SIG0_g) (3) 369- 389 F21.19 mag e_RMSg Error of RMSg (SIG0gERR) 391- 408 F18.13 0.1nm lRestg Rest-frame wavelength the target was observed in g-band (LAMBDARESTg) (4) 410- 427 F18.16 [d] log(tauObsr) Logarithm of τDRW damping time-scale of the DRW light curve model fit in the SDSS r-band observed frame (logTAUOBS_r) 429- 447 F19.17 [d] e_log(tauObsr) Lower error of log(tauObsr) (logTAUOBSrERR_L) 449- 467 F19.17 [d] E_log(tauObsr) Upper error of log(tauObsr) (logTAUOBSrERR_U) 469- 486 F18.16 [d] log(tauRestr) Logarithm of τDRW in the SDSS r-band rest frame (logTAUREST_r) 488- 506 F19.17 [d] e_log(tauRestr) Lower error of log(tauRestr) (logTAURESTrERR_L) 508- 526 F19.17 [d] E_log(tauRestr) Upper error of log(tauRestr) (logTAURESTrERR_U) 528- 547 F20.17 mag log(SigDRWr) The logarithm of σDRW long-term standard deviation of variability in SDSS r-band (logSIGMAr) 549- 567 F19.17 mag e_log(SigDRWr) Lower error of log(SigDRWr) (logSIGMArERRL) 569- 587 F19.17 mag E_log(SigDRWr) Upper error of log(SigDRWr) (logSIGMArERRU) 589- 607 F19.16 mag log(Signr) Logarithm of Jitter noise term in SDSS r-band (logJITTERr) (2) 609- 628 F20.18 mag e_log(Signr) Lower error of log(Signr) (logJITTERrERRL) 630- 649 F20.18 mag E_log(Signr) Upper error of log(Signr) (logJITTERrERRU) 651- 670 F20.18 mag RMSr The intrinsic RMS variability in the SDSS r-band σ0,r (SIG0_r) (3) 672- 692 F21.19 mag e_RMSr Error of RMSr (SIG0rERR) 694- 711 F18.13 0.1nm lRestr Rest-frame wavelength the target was observed in r-band (LAMBDARESTr) (4) 713- 730 F18.16 [d] log(tauObsi) Logarithm of τDRW damping time-scale of the DRW light curve model fit in the SDSS i-band observed frame (logTAUOBS_i) 732- 750 F19.17 [d] e_log(tauObsi) Lower error of log(tauObsi) (logTAUOBSiERR_L) 752- 770 F19.17 [d] E_log(tauObsi) Upper error of log(tauObsr) (logTAUOBSiERR_U) 772- 789 F18.16 [d] log(tauResti) Logarithm of τDRW in the SDSS i-band rest frame (logTAUREST_i) 791- 809 F19.17 [d] e_log(tauResti) Lower error of log(tauResti) (logTAURESTiERR_L) 811- 829 F19.17 [d] E_log(tauResti) Upper error of log(tauResti) (logTAURESTiERR_U) 831- 850 F20.17 mag log(SigDRWi) The logarithm of σDRW long-term standard deviation of variability in SDSS i-band (logSIGMAi) 852- 870 F19.17 mag e_log(SigDRWi) Lower error of log(SigDRWi) (logSIGMAiERRL) 872- 890 F19.17 mag E_log(SigDRWi) Upper error of log(SigDRWi) (logSIGMAiERRU) 892- 910 F19.16 mag log(Signi) Logarithm of Jitter noise term in SDSS i-band (logJITTERi) (2) 912- 931 F20.18 mag e_log(Signi) Lower error of log(Signi) (logJITTERiERRL) 933- 952 F20.18 mag E_log(Signi) Upper error of log(Signi) (logJITTERiERRU) 954- 973 F20.18 mag RMSi The intrinsic RMS variability in the SDSS i-band σ0,i (SIG0_i) (3) 975- 995 F21.19 mag e_RMSi Error of RMSi (SIG0iERR) 997-1014 F18.13 0.1nm lResti Rest-frame wavelength the target was observed in i-band (LAMBDARESTi) (4) -------------------------------------------------------------------------------- Note (1): IDs from MacLeod et al. 2012ApJ...753..106M 2012ApJ...753..106M, Cat. J/ApJ/753/106. Note (2): Term to characterize the effect of a white noise floor from unknown systematic flux errors also called Jitter σn. Note (3): Calculated using a maximum-likelihood approach described in Shen et al. 2019ApJS..241...34S 2019ApJS..241...34S, Cat. J/ApJS/241/34. Note (4): Rest-frame wavelength are mostly in ultraviolet bands due to cosmologic redshift 1+z values. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Luc Trabelsi [CDS] 13-Jan-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line