J/MNRAS/514/1689 Cartwheel galaxy nebular abundances (Zaragoza-Cardiel+, 2022)
Nebular abundance gradient in the Cartwheel galaxy using MUSE data.
Zaragoza-Cardiel J., Gomez-Gonzalez V.M.A., Mayya D., Ramos-Larios G.
<Mon. Not. R. Astron. Soc., 514, 1689-1705 (2022)>
=2022MNRAS.514.1689Z 2022MNRAS.514.1689Z (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, nearby ; H II regions ; Abundances ; Optical
Keywords: galaxies: star clusters - galaxies: individual - galaxies: abundances
Abstract:
We here present the results from a detailed analysis of nebular
abundances of commonly observed ions in the collisional ring galaxy
Cartwheel using the Very Large Telescope (VLT) Multi-Unit
Spectroscopic Explorer (MUSE) dataset. The analysis includes 221 HII
regions in the star-forming ring, in addition to 40 relatively fainter
Ha-emitting regions in the spokes, disk and the inner ring. The ionic
abundances of He, N, O and Fe are obtained using the direct method
(DM) for 9, 20, 20, and 17 ring HII regions, respectively, where the
S++ temperature-sensitive line is detected. For the rest of the
regions, including all the nebulae between the inner and the outer
ring, we obtained O abundances using the strong-line method (SLM). The
ring regions have a median 12+log(O/H)=8.19±0.15,
log(N/O)=-1.57±0.09 and log(Fe/O)=-2.24±0.09 using the DM. Within
the range of O abundances seen in the Cartwheel, the N/O and Fe/O
values decrease proportionately with increasing O, suggesting local
enrichment of O without corresponding enrichment of primary N and Fe.
The O abundances of the disk HII regions obtained using the SLM show a
well-defined radial gradient. The mean O abundance of the ring HII
regions is lower by ∼0.1dex as compared to the extrapolation of the
radial gradient. The observed trends suggest the preservation of the
pre-collisional abundance gradient, displacement of most of the
processed elements to the ring, as predicted by the recent simulation
by Renaud et al. (2018MNRAS.473..585R 2018MNRAS.473..585R), and post- collisional infall
of metal-poor gas in the ring.
Description:
The main purpose of the spectral analysis is to measure accurate
fluxes of emission lines suitable for nebular abundance measurements.
The spectral range of MUSE includes temperature-sensitive lines of
[NII] and [SIII] ions, density-sensitive lines of [SII], [ClIII] and
[ArIV] ions, in addition to lines for determination of abundances of
He, O, N, S, Ar, Cl, and Fe.
We present the nebular abundance analysis of 221 HII regions
identified in the external ring of the Cartwheel galaxy, as well as 40
regions inside the disc, using the spectroscopic data from the MUSE
instrument.
The complete list of lines we measured is presented in table.dat.
Objects:
--------------------------------------------------------
RA (2000) DE Designation(s)
--------------------------------------------------------
00 37 41.11 -33 42 58.5 Cartwheel galaxy = ESO 350-40
--------------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table.dat 766 252 Fluxes of principal emission lines
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- ID Identification label (1-221, H1-H40)
6- 14 F9.7 deg RAdeg Right Ascension (J2000)
16- 25 F10.6 deg DEdeg Declination (J2000)
27- 33 F7.1 K tl ? Electron Temperature low ionization
35- 40 F6.1 K e_tl ? Electron Temperature low ionization
error
42- 48 F7.1 K th ? Electron Temperature high ionization
50- 55 F6.1 K e_th ? Electron Temperature high ionization
error
57- 63 F7.1 K tm ? Electron Temperature medium ionization
65- 70 F6.1 K e_tm ? Electron Temperature medium ionization
error
72- 76 F5.1 e-/cm3 Ne([SII]) ? Electron density from S2 lines
78- 82 F5.1 e-/cm3 e_Ne([SII]) ? Electron density error
84- 90 E7.2 --- [FeIII/H] ? Abundance of FeIII
92- 96 E5.1 --- e_[FeIII/H] ? Abundance of FeIII error
98-105 E8.3 --- [OI/H] ? Abundance of OI
107-111 E5.1 --- e_[OI/H] ? Abundance of OI error
113-119 E7.2 --- [OII/H] ? Abundance of OII
121-125 E5.1 --- e_[OII/H] ? Abundance of OII error
127-133 E7.2 --- [OIII/H] ? Abundance of OIII
135-139 E5.1 --- e_[OIII/H] ? Abundance of OIII error
141-147 E7.2 --- [NII/H] ? Abundance of NII
149-153 E5.1 --- e_[NII/H] ? Abundance of NII error
155-161 F7.3 --- [HeI/H] ? Abundance of HeI
163-169 F7.3 --- e_[HeI/H] ? Abundance of HeI error
171-179 F9.5 --- [HeII/H] ? Abundance of HeII
181-185 E5.1 --- e_[HeII/H] ? Abundance of HeII error
187-193 E7.2 --- [Fe/H] ? Abundance of Fe
195-199 E5.1 --- e_[Fe/H] ? Abundance of Fe error
201-205 E5.1 --- [O/H] ? Abundance of O
207-211 E5.1 --- e_[O/H] ? Abundance of O error
213-219 E7.2 --- [N/H] ? Abundance of N
221-225 E5.1 --- e_[N/H] ? Abundance of N error
227-233 F7.3 --- [He/H] ? Abundance of He
235-241 F7.3 --- e_[He/H] ? Abundance of He error
243-247 F5.1 deg PA ? Position Angle
249-256 F8.3 0.1nm EWHa ? Hα equivalent width
258-264 F7.3 --- AV ? Attenuation
266-272 F7.3 --- e_AV ? Attenuation error
274-278 F5.1 kpc radius ? Galactrocentric radius
280-287 F8.4 --- 12+log(O/H)s ? Oxygen abundance derived with the
strong lines method
289-296 F8.4 --- e_12+log(O/H)s ? Oxygen abundance error derived with the
strong lines method
298-304 F7.3 0.1nm EWHb ? Hβ equivalent width
306-310 F5.1 --- SNRHb ? SNR of Hb flux
312-320 E9.4 mW/m2 H1r-4861A ? Attenuation-corrected flux of H1r_4861A
322-326 E5.1 mW/m2 e_H1r-4861A ? H1r-4861A error
328-333 F6.2 10-2 Fe3-4659A ? Fe3-4659A/H1r-4861A flux ratio
335-340 F6.2 10-2 e_Fe3-4659A ? Fe3-4659A/H1r-4861A flux ratio error
342-347 F6.2 10-2 He2r-4686A ? He2r-4686A/H1r-4861A flux ratio
349-354 F6.2 10-2 e_He2r-4686A ? He2r-4686A/H1r-4861A flux ratio error
356-362 F7.3 10-2 O3-4959A ? O3-4959A/H1r-4861A flux ratio
364-368 E5.1 10-2 e_O3-4959A ? O3-4959A/H1r-4861A flux ratio error
370-375 F6.2 10-2 Fe3-4986A ? Fe3-4986A/H1r-4861A flux ratio
377-382 F6.2 10-2 e_Fe3-4986A ? Fe3-4986A/H1r-4861A flux ratio error
384-390 F7.3 10-2 O3-5007A ? O3-5007A/H1r-4861AA flux ratio
392-399 F8.4 10-2 e_O3-5007A ? O3-5007A/H1r-4861A flux ratio error
401-407 F7.3 10-2 He1r-5876A ? He1r-5876A/H1r-4861A flux ratio
409-415 F7.3 10-2 e_He1r-5876A ? He1r-5876A/H1r-4861A flux ratio error
417-423 F7.3 10-2 O1-6300A ? O1-6300A/H1r-4861A flux ratio
425-431 F7.3 10-2 e_O1-6300A ? O1-6300A/H1r-4861A flux ratio error
433-439 F7.3 10-2 S3-6312A ? S3-6312A/H1r-4861A flux ratio
441-447 F7.3 10-2 e_S3-6312A ? S3-6312A/H1r-4861A flux ratio error
449-454 F6.2 10-2 O1-6364A ? O1-6364A/H1r-4861A flux ratio
456-461 F6.2 10-2 e_O1-6364A ? O1-6364A/H1r-4861A flux ratio error
463-469 F7.3 10-2 N2-6548A ? N2-6548A/H1r-4861A flux ratio
471-478 F8.4 10-2 e_N2-6548A ? N2-6548A/H1r-4861A flux ratio error
480-485 F6.2 10-2 H1r-6563A ? H1r-6563A/H1r-4861A flux ratio
487-494 F8.4 10-2 e_H1r-6563A ? H1r-6563A/H1r-4861A flux ratio error
496-502 F7.3 10-2 N2-6584A ? N2-6584A/H1r-4861A flux ratio
504-511 F8.4 10-2 e_N2-6584A ? N2-6584A/H1r-4861A flux ratio error
513-519 F7.3 10-2 He1r-6678A ? He1r-6678A/H1r-4861A flux ratio
521-527 F7.3 10-2 e_He1r-6678A ? He1r-6678A/H1r-4861A flux ratio error
529-535 F7.3 10-2 S2-6716A ? S2-6716A/H1r-4861A flux ratio
537-541 E5.1 10-2 e_S2-6716A ? S2-6716A/H1r-4861A flux ratio error
543-549 F7.3 10-2 S2-6731A ? S2-6731A/H1r-4861A flux ratio
551-558 F8.4 10-2 e_S2-6731A ? S2-6731A/H1r-4861A flux ratio error
560-565 F6.2 10-2 O2-7319A ? O2-7319A/H1r-4861A flux ratio
567-572 F6.2 10-2 e_O2-7319A ? O2-7319A/H1r-4861A flux ratio error
574-579 F6.2 10-2 O2-7330A ? O2-7330A/H1r-4861A flux ratio
581-586 F6.2 10-2 e_O2-7330A ? O2-7330A/H1r-4861A flux ratio error
588-593 F6.2 10-2 Ar3-7751A ? Ar3-7751A/H1r-4861A flux ratio
595-600 F6.2 10-2 e_Ar3-7751A ? Ar3-7751A/H1r-4861A flux ratio error
602-607 F6.2 10-2 O1-8446A ? O1-8446A/H1r-4861A flux ratio
609-614 F6.2 10-2 e_O1-8446A ? O1-8446A/H1r-4861A flux ratio error
616-622 F7.3 10-2 S3-9069A ? S3-9069A/H1r-4861A flux ratio
624-630 F7.3 10-2 e_S3-9069A ? S3-9069A/H1r-4861A flux ratio error
632-638 F7.3 10-2 He1r-7065A ? He1r-7065A/H1r-4861A flux ratio
640-646 F7.3 10-2 e_He1r-7065A ? He1r-7065A/H1r-4861A flux ratio error
648-653 F6.2 10-2 Ar4-4711A ? Ar4-4711A/H1r-4861A flux ratio
655-660 F6.2 10-2 e_Ar4-4711A ? Ar4-4711A/H1r-4861A flux ratio error
662-667 F6.2 10-2 Ar4-4740A ? Ar4-4740A/H1r-4861A flux ratio
669-674 F6.2 10-2 e_Ar4-4740A ? Ar4-4740A/H1r-4861A flux ratio error
676-681 F6.2 10-2 He1r-4922A ? He1r-4922A/H1r-4861A flux ratio
683-688 F6.2 10-2 e_He1r-4922A ? He1r-4922A/H1r-4861A flux ratio error
690-694 F5.1 10-2 Fe3-5270A ? Fe3-5270A/H1r-4861A flux ratio
696-700 F5.1 10-2 e_Fe3-5270A ? Fe3-5270A/H1r-4861A flux ratio error
702-706 F5.1 10-2 He1r-7281A ? He1r-7281A/H1r-4861A flux ratio
708-712 F5.1 10-2 e_He1r-7281A ? He1r-7281A/H1r-4861A flux ratio error
714-720 F7.3 10-2 He1r-5016A ? He1r-5016A/H1r-4861A flux ratio
722-728 F7.3 10-2 e_He1r-5016A ? He1r-5016A/H1r-4861A flux ratio error
730-735 F6.2 10-2 N2-5755A ? N2-5755A/H1r-4861A flux ratio
737-742 F6.2 10-2 e_N2-5755A ? N2-5755A/H1r-4861A flux ratio error
744-748 F5.1 10-2 Fe3-4701A ? Fe3-4701A/H1r-4861A flux ratio
750-754 F5.1 10-2 e_Fe3-4701A ? Fe3-4701A/H1r-4861A flux ratio error
756-760 F5.1 10-2 He1r-5048A ? He1r-5048A/H1r-4861A flux ratio
762-766 F5.1 10-2 e_He1r-5048A ? He1r-5048A/H1r-4861A flux ratio error
--------------------------------------------------------------------------------
Acknowledgements:
Javier Zaragoza-Cardiel, javier.zaragoza(at)inaoep.mx
(End) Patricia Vannier [CDS] 18-Aug-2022