J/MNRAS/514/2915   Multiwavelength study of S2CLS/NEPSC2 sources   (Shim+, 2022)

Multiwavelength properties of 850-µm selected sources from the North Ecliptic Pole SCUBA-2 survey. Shim H., Lee D., Kim Y., Scott D., Serjeant S., Ao Y., Barrufet L., Chapman S.C., Clements D.L., Conselice C.J., Goto T., Greve T.R., Hwang H.S., Im M., Jeong W.-S., Kim H.K., Kim M., Kim S.J., Kong A.K.H., Koprowski M.P., Malkan M.A., Micha M., Pearson C., Seo H., Takagi T., Toba Y., White G.J., Woo J.-H. <Mon. Not. R. Astron. Soc. 514, 2915-2935 (2022)> =2022MNRAS.514.2915S 2022MNRAS.514.2915S (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies ; Active gal. nuclei ; Millimetric/submm sources ; Cross identifications ; Photometry ; Positional data ; Energy distributions ; Models ; Radio sources ; Optical ; Infrared sources ; Redshifts ; Star Forming Region ; Extinction ; Stars, masses Keywords: surveys - galaxies: evolution - galaxies: high-redshift - galaxies: starburst - submillimetre: galaxies Abstract: We present the multiwavelength counterparts of 850-µm selected submillimetre sources over a 2-deg2 field centred on the North Ecliptic Pole. In order to overcome the large beam size (15 arcsec) of the 850-µm images, deep optical to near-infrared (NIR) photometric data and arcsecond-resolution 20-cm images are used to identify counterparts of submillimetre sources. Among 647 sources, we identify 514 reliable counterparts for 449 sources (69 per cent in number), based either on probabilities of chance associations calculated from positional offsets or offsets combined with the optical-to-NIR colours. In the radio imaging, the fraction of 850-µm sources having multiple counterparts is 7 per cent. The photometric redshift, infrared luminosity, stellar mass, star formation rate (SFR), and the active galactic nucleus (AGN) contribution to the total infrared luminosity of the identified counterparts are investigated through spectral energy distribution fitting. The SMGs are infrared-luminous galaxies at an average = 2.5 with log10(LIR/L) = 11.5-13.5, with a mean stellar mass of log10(Mstar/M) = 10.90 and SFR of log10(SFR/M.yr-1)=2.34. The submillimetre galaxies (SMGs) show twice as large SFR as galaxies on the star-forming main sequence, and about 40 per cent of the SMGs are classified as objects with bursty star formation. At z => 4, the contribution of AGN luminosity to total luminosity for most SMGs is larger than 30 per cent. The FIR-to-radio correlation coefficient of SMGs is consistent with that of main-sequence galaxies at z ≃ 2. Description: The population of submillimetre galaxies SMGs has been unveiled and widely studied during the past two decades, supporting the idea that a significant fraction of star formation is located in heavily dust-obscured galaxies during the peak epoch of cosmic star formation. In order to probe the formation and evolution of SMGs, it is necessary to identify SMGs in other wavebands. For instance, an optical/near-infrared (NIR) identification is crucial for estimating properties such as stellar mass and photometric redshift. The North Ecliptic Pole NEP region is one of the seven extragalactic fields included in the original S2CLS project. Here we focus on S2CLS-NEP 850µm sources and their counterparts from multiwavelength data sets including the X-ray, optical, NIR, MIR, FIR and radio wavelengths. We present these photometric and spectroscopic data located in the full NEP survey field in order to predict their physical properties. Firstly, we start from sub-mm merged S2CLS/NEPSC2 catalog of 644 unique 850µm sources. As exposed along the section 2, we search counterparts in multiwavelength data sets in order to apply different identification methods based on counterparts probability (i.e section 3). We construct the final counterparts catalogue by compiling all the counterpart identification results as exposed in tablea1.dat regrouping cross IDs and all positional data. Next in order to prepare to the SED fitting work (i.e section 4), we regroup all density fluxes of these 514 850µm counterparts from optical to radio in tablea2.dat. We use the CIGALE algorithm to extract physical properties of these galaxies such as photometric redshift, total IR luminosity, SFR, stellar mass, AV, fAGN, and qFIR, as well as their uncertainties (i.e sections 4 & 5). All these properties are then presented in tablea2.dat with flags to indicate the SED fit quality and reliability. Objects: ---------------------------------------------------------------------------- RA (ICRS) DE Designation(s) ---------------------------------------------------------------------------- 18 00 00.00 +66 33 38.5 NAME NEP = NAME North Ecliptic Pole ---------------------------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 203 760 Counterpart identification results for entire 644 unique 850µm sources from the NEPSC2+S2CLS merge survey tablea2.dat 1774 514 Multiwavelength photometry of the 514 identified counterparts and the CIGALE outputs for each object -------------------------------------------------------------------------------- See also: J/MNRAS/458/4321 : SCUBA-2 galaxies in 850um survey (Koprowski+, 2016) J/MNRAS/436/1919 : SCUBA observations of COSMOS galaxies (Casey+, 2013) J/MNRAS/380/199 : SCUBA Half-Degree Extragalactic Survey. III (Ivison+, 2007) J/MNRAS/465/1789 : SCUBA-2 Cosmology Legacy Survey (Geach+, 2017) J/MNRAS/495/3409 : SCUBA-2-COSMOS field brightest sub-mm sources (Simpson+, 2020) J/MNRAS/498/5065 : NEPSC2, the North Ecliptic Pole SCUBA-2 survey (Shim+, 2020) J/MNRAS/494/3828 : ALMA survey of the SCUBA-2 CLS UDS field (Dudzeviciute+, 2020) J/MNRAS/469/492 : JCMT/SCUBA2 objects in COSMOS and UDS fields (Michalowski+ 2017) J/ApJ/886/48 : Radio & opt/NIR counterparts of S2COSMOS submm galaxies (An+, 2019) J/ApJ/880/43 : S2COSMOS: bright SCUBA-2 submm sources in COSMOS (Simpson+, 2019) J/ApJ/820/82 : S2CLS: multiwavelength counterparts to SMGs (Chen+, 2016) J/ApJ/889/80 : STUDIES. III. SCUBA-2 450um gal. with MIPS & VLA obs. (Lim+, 2020) J/MNRAS/446/911 : X-ray sources in the AKARI NEP deep field (Krumpe+, 2015) J/MNRAS/500/4078 : Band-merged catalogue of AKARI infrared sources (Kim+, 2021) J/MNRAS/498/609 : AKARI North Ecliptic Pole field in CFHT u-band (Huang+,2020) J/MNRAS/446/911 : X-ray sources in the AKARI NEP deep field (Krumpe+, 2015) J/ApJS/190/166 : Optical catalog of AKARI NEP-wide survey (Jeon+, 2010) J/ApJS/214/20 : AKARI NEP field J- and H- band source catalog (Jeon+, 2014) J/ApJS/234/38 : Spitzer/IRAC obs. of the North Ecliptic Pole (Nayyeri+,2018) J/A+A/645/A95 : NEP raster ROSAT X-ray/Optical catalog (Hasinger+, 2021) J/A+A/537/A24 : AKARI NEP-Deep field mid-IR source catalogue (Takagi+, 2012) J/A+A/517/A54 : 20cm survey of the AKARI NEP (White+, 2010) J/A+A/548/A29 : IR source catalog of AKARI NEP-Wide field (Kim+, 2012) J/A+A/566/A60 : Optical-NIR catalog of AKARI NEP Deep Field (Oi+, 2014) J/PASJ/71/13 : Herschel-PACS North Ecliptic Pole Survey (Pearson+, 2019) J/A+A/514/A10 : AGNs in submm-selected Lockman Hole galaxies (Serjeant+, 2010) J/A+A/622/A103 : Python Code Investigating GALaxy Emission (Boquien+, 2019) J/ApJ/806/110 : ALESS survey: SMGs in the ECDF-S data (da Cunha+, 2015) Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 I5 --- SMM ?=-32768 The SMM identifier in the combined catalogue (SMM_ID) 7- 27 A21 --- NEPSC2 The NEPSC2 identifier (NEPSC2_ID) (1) 29- 36 A8 --- S2CLS The S2CLS identifier (S2CLS_ID) (2) 38- 46 A9 --- Radio The radio counterpart identifier (radio_id) (3) 48- 55 A8 --- OptIR The Optical-Infrared identifier (optir_id) (4) 57- 68 F12.8 deg RA850deg Right ascension of the 850 µm source (J2000) (RA_850um) 70- 80 F11.8 deg DE850deg Declination of the 850 µm source (J2000) (Dec_850um) 82- 94 F13.9 deg RAVLAdeg ? Right ascension of the counterpart in the VLA images (J2000) (RA_VLA) 96-107 F12.9 deg DEVLAdeg ? Declination of the counterpart in the VLA images (J2000) (Dec_VLA) 109-120 F12.8 deg RAIRACdeg ? Right ascension of the counterpart in IRAC images (J2000) (RA_IRAC) 122-133 F12.9 deg DEIRACdeg ? Declination of the counterpart in IRAC images (J2000) (Dec_IRAC) 135-147 F13.9 deg RAoptdeg ? Right ascension of the counterpart in HSC images (J2000) (RA_opt) (5) 149-160 F12.9 deg DEoptdeg ? Declination of the counterpart in HSC images (J2000) (Dec_opt) (5) 162-178 F17.14 mJy S850 Flux density in 850 µm S2CLS/NEPSC2 images (S_850um) 180-195 F16.14 mJy e_S850 Mean error of S850um (Serr850um) 197 I1 --- f_Radio [0/1] Flag indicates if counterpart is identified in radio 20cm, 0 for no with 620 cases and 1 for yes with 140 cases (radioid) 199 I1 --- f_OptIR [0/1] Flag indicates if counterpart is identified using optical-NIR colour, 0 for no with 37 cases and 1 for yes with 723 cases (colourid) 201 I1 --- Reliable [0/1] Flag indicates if the identification based on colour is reliable enough, 0 for no with 300 cases and 1 for yes with 460 cases (reliable) (6) 203 I1 --- f_SMM [0/1] Flag indicates if the submillimetre source has more than one counterpart, 0 for no with 538 cases and 1 for yes with 222 cases (multipleID) -------------------------------------------------------------------------------- Note (1): North Ecliptic Pole SCUBA-2 survey source catalogue from Shim et al. 2020MNRAS.498.5065S 2020MNRAS.498.5065S, Cat. J/MNRAS/498/5065. Note (2): The S2CLS project SCUBA-2 Cosmology Legacy Survey from Geach et al. 2017MNRAS.465.1789G 2017MNRAS.465.1789G, Cat. J/MNRAS/465/1789. Note (3): As presented in the section 3.1 Radio identification, suffices 'a' and 'b' in order of positional offsets between the 850 µm and 20-cm position. As explained in section 2.2.1 Radio, the 20-cm continuum data (i.e. with an effective frequency of 1525 MHz) of the NEP-deep field have been obtained using the Karl G. Jansky Very Large Array (VLA) during 2013-2014 (project ID: VLA/13B-361 and VLA/14A-469, PI: K. Nakanishi). Note (4): As presented in the section 3.2 Optical-to-NIR colour identification, the identifier with '-1' and '-2' stand for primary and secondary counterpart from the optical-NIR colour identification. IDs with '-3' indicates that the object is not originally identified from the optical-NIR colour identification, because of the low relative possibility of being a match pi value. If there is more than one number in the suffices, e.g. '-21' and '-22', it means that more than one secondary counterpart is identified because of the definition of the secondary identification. Note (5): As explained in the section 2.2.3 Optical, the most recent optical source catalogue over the entire 4 deg2 of the NEP-wide survey area provides deep 5-band Subaru/HSC photometry in the g, r, i, z, and y bands, respectively (Oi et al. 2021MNRAS.500.5024O 2021MNRAS.500.5024O). Most of time when it is available, coordinates of the counterparts are in the HSC g-band or in z/y-bands images when the object is undetected in the g band. Note (6): We apply a false rate cut of 10 per cent (i.e. pany > 0.74) to define the identification as reliable. The pany i defined as the probability of a source in a poor resolution image (850µm source in this case) has any counterpart within the specified radius (i.e see section 3.2 and equation 2). -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 I5 --- SMM ?=-32768 The SMM identifier in the combined catalogue (SMM_ID) 7- 15 A9 --- Radio The radio counterpart identifier (radio_id) 17- 24 A8 --- OptIR The Optical-Infrared identifier (optir_id) 26- 46 F21.15 mJy HSCg ?=-9999 Subaru/HSC g-band flux density (HSC_g) 48- 68 F21.15 mJy e_HSCg ?=-9999 Mean uncertainty of HSCg (HSCgerr) 70- 90 F21.15 mJy HSCr ?=-9999 Subaru/HSC r-band flux density (HSC_r) 92- 112 F21.15 mJy e_HSCr ?=-9999 Mean uncertainty of HSCr (HSCrerr) 114- 134 F21.15 mJy HSCi ?=-9999 Subaru/HSC i-band flux density (HSC_i) 136- 156 F21.15 mJy e_HSCi ?=-9999 Mean uncertainty of HSCi (HSCierr) 158- 178 F21.15 mJy HSCz ?=-9999 Subaru/HSC z-band flux density (HSC_z) 180- 200 F21.15 mJy e_HSCz ?=-9999 Mean uncertainty of HSCz (HSCzerr) 202- 222 F21.15 mJy HSCy ?=-9999 Subaru/HSC y-band flux density (HSC_y) 224- 244 F21.15 mJy e_HSCy ?=-9999 Mean uncertainty of HSCy (HSCyerr) 246- 266 F21.15 mJy MCamu ?=-9999 CFHT/MegaCam u-band flux density (MCam_u) 268- 288 F21.15 mJy e_MCamu ?=-9999 Mean uncertainty of MCamu (MCamuerr) 290- 310 F21.15 mJy MCamg ?=-9999 CFHT/MegaCam g-band flux density (MCam_g) 312- 332 F21.15 mJy e_MCamg ?=-9999 Mean uncertainty of MCamg (MCamgerr) 334- 354 F21.15 mJy MCamr ?=-9999 CFHT/MegaCam r-band flux density (MCam_r) 356- 376 F21.15 mJy e_MCamr ?=-9999 Mean uncertainty of MCamr (MCamrerr) 378- 398 F21.15 mJy MCami ?=-9999 CFHT/MegaCam i-band flux density (MCam_i) 400- 420 F21.15 mJy e_MCami ?=-9999 Mean uncertainty of MCami (MCamierr) 422- 442 F21.15 mJy MCamz ?=-9999 CFHT/MegaCam z-band flux density (MCam_z) 444- 464 F21.15 mJy e_MCamz ?=-9999 Mean uncertainty of MCamz (MCamzerr) 466- 486 F21.15 mJy WFCAMY ?=-9999 Wide Field Infrared Camera WIRCAM Y-band flux density (WFCAM_Y) 488- 508 F21.15 mJy e_WFCAMY ?=-9999 Mean uncertainty of WFCAMY (WFCAMYerr) 510- 530 F21.15 mJy CFHT-WFCAMJ ?=-9999 CFHT/WIRCam J-band flux density (CFHTwircamJ) 532- 552 F21.15 mJy e_CFHT-WFCAMJ ?=-9999 Mean uncertainty of CFHT-WFCAMJ (CFHTwircamJ_err) 554- 574 F21.15 mJy CFHT-WFCAMKs ?=-9999 CFHT/WIRCam Ks-band flux density (CFHTwircamKs) 576- 596 F21.15 mJy e_CFHT-WFCAMKs ?=-9999 Mean uncertainty of CFHT-WFCAMKs (CFHTwircamKs_err) 598- 618 F21.15 mJy IRAC3.6 ?=-9999 Spitzer/IRAC 3.6µm-band flux density (IRAC1) 620- 640 F21.15 mJy e_IRAC3.6 ?=-9999 Mean uncertainty of IRAC3.6 (IRAC1_err) 642- 662 F21.15 mJy IRAC4.5 ?=-9999 Spitzer/IRAC 4.5µm-band flux density (IRAC2) 664- 684 F21.15 mJy e_IRAC4.5 ?=-9999 Mean uncertainty of IRAC4.5 (IRAC2_err) 686- 706 F21.15 mJy N2 ?=-9999 AKARI/IRC NEP-deep/wide surveys N2-band 2.4µm flux density (N2-band) 708- 728 F21.15 mJy e_N2 ?=-9999 Mean uncertainty of N2 (N2_err) 730- 750 F21.15 mJy N3 ?=-9999 AKARI/IRC NEP-deep/wide surveys N3-band 3.2µm flux density (N3-band) 752- 772 F21.15 mJy e_N3 ?=-9999 Mean uncertainty of N3 (N3_err) 774- 794 F21.15 mJy N4 ?=-9999 AKARI/IRC NEP-deep/wide surveys N4-band 4.1µm flux density (N4-band) 796- 816 F21.15 mJy e_N4 ?=-9999 Mean uncertainty of N4 (N4_err) 818- 838 F21.15 mJy S7 ?=-9999 AKARI/IRC NEP-deep/wide surveys S7-band 7.0µm flux density (S7) 840- 860 F21.15 mJy e_S7 ?=-9999 Mean uncertainty of S7 (S7_err) 862- 882 F21.15 mJy S9W ?=-9999 AKARI/IRC NEP-deep/wide surveys S9W-band 9.0µm flux density (S9W) 884- 904 F21.15 mJy e_S9W ?=-9999 Mean uncertainty of S9W (S9W_err) 906- 926 F21.15 mJy S11 ?=-9999 AKARI/IRC NEP-deep/wide surveys S11-band 11.0µm flux density (S11) 928- 948 F21.15 mJy e_S11 ?=-9999 Mean uncertainty of S11 (S11_err) 950- 970 F21.15 mJy L15 ?=-9999 AKARI/IRC NEP-deep/wide surveys L15-band 15µm flux density (L15) 972- 992 F21.15 mJy e_L15 ?=-9999 Mean uncertainty of L15 (L15_err) 994-1014 F21.15 mJy L18W ?=-9999 AKARI/IRC NEP-deep/wide surveys L18-band 18µm flux density (L18W) 1016-1036 F21.15 mJy e_L18W ?=-9999 Mean uncertainty of L18W (L18W_err) 1038-1058 F21.15 mJy L24 ?=-9999 AKARI/IRC NEP-deep/wide surveys L24-band 24µm flux density (L24) 1060-1080 F21.15 mJy e_L24 ?=-9999 Mean uncertainty of L24 (L24_err) 1082-1097 F16.10 mJy MIPS24 ?=-9999 Spitzer/MIPS 24µm band flux density (MIPS1) 1099-1113 F15.9 mJy e_MIPS24 ?=-9999 Mean uncertainty of MIPS24 (MIPS1_err) 1115-1135 F21.15 mJy WISE3.4 ?=-9999 Wide-field Infrared Survey Explorer WISE-band 3.4µm flux density (WISE1) 1137-1157 F21.15 mJy e_WISE3.4 ?=-9999 Mean uncertainty of WISE3.4 (WISE1_err) 1159-1179 F21.15 mJy WISE4.6 ?=-9999 Wide-field Infrared Survey Explorer WISE-band 4.6µm flux density (WISE2) 1181-1201 F21.15 mJy e_WISE4.6 ?=-9999 Mean uncertainty of WISE4.6 (WISE2_err) 1203-1223 F21.15 mJy WISE12 ?=-9999 Wide-field Infrared Survey Explorer WISE-band 12µm flux density (WISE3) 1225-1245 F21.15 mJy e_WISE12 ?=-9999 Mean uncertainty of WISE12 (WISE3_err) 1247-1267 F21.15 mJy WISE22 ?=-9999 Wide-field Infrared Survey Explorer WISE-band 22µm flux density (WISE4) 1269-1289 F21.15 mJy e_WISE22 ?=-9999 Mean uncertainty of WISE22 (WISE4_err) 1291-1306 F16.10 mJy PACS100 ?=-9999 The Herschel/PACS green 100µm band flux density (PACS_green) 1308-1328 F21.15 mJy e_PACS100 ?=-9999 Mean uncertainty of PACS100 (PACSgreenerr) 1330-1343 F14.8 mJy PACS160 ?=-9999 The Herschel/PACS red 160µm band flux density (PACS_red) 1345-1364 F20.14 mJy e_PACS160 ?=-9999 Mean uncertainty of PACS160 (PACSrederr) 1366-1379 F14.8 mJy SPIRE250 ?=-9999 The Herschel/SPIRE 250µm band flux density (PSW) 1381-1401 F21.15 mJy e_SPIRE250 ?=-9999 Mean uncertainty of SPIRE250 (PSW_err) 1403-1415 F13.7 mJy SPIRE350 ?=-9999 The Herschel/SPIRE 350µm band flux density (PMW) 1417-1437 F21.15 mJy e_SPIRE350 ?=-9999 Mean uncertainty of SPIRE350 (PMW_err) 1439-1452 F14.8 mJy SPIRE500 ?=-9999 The Herschel/SPIRE 500µm band flux density (PLW) 1454-1473 F20.14 mJy e_SPIRE500 ?=-9999 Mean uncertainty of SPIRE500 (PLW_err) 1475-1494 F20.14 mJy SCUBA850 SCUBA-2 surveys 850µm band flux density (SCUBA850) 1496-1515 F20.14 mJy e_SCUBA850 Mean uncertainty of SCUBA850 (SCUBA850_err) 1517-1530 F14.8 mJy VLAL20 ?=-9999 Radio VLA L-band 20cm flux density (VLA_L) 1532-1552 F21.15 mJy e_VLAL20 ?=-9999 Mean uncertainty of VLAL20 (VLALerr) 1554 I1 --- SEDok [0/1] Flag indicates if the CIGALE SED fit is a good quality, 0 for no with 180 cases and 1 for yes with 334 cases (ok_sedfit) 1556 I1 --- f_z [0/1] Flag to indicates if the redshift is spectroscopic, 0 for photometric with 496 cases and 1 for yes with 18 cases (ifspecz) 1558-1574 F17.15 --- z Redshift from CIGALE output results (redshift) 1576-1593 F18.15 --- e_z ?=-1 Mean uncertainty of z (redshift_err) 1595-1605 E11.5 W LIR Total fitting IR luminosity from CIGALE output results (LIR) 1607-1617 E11.5 W e_LIR Mean uncertainty of LIR (LIR_err) 1619-1638 F20.15 Msun/yr SFR Star forming rate SFR from CIGALE output results (SFR) 1640-1659 F20.15 Msun/yr e_SFR Mean uncertainty of SFR (SFR_err) 1661-1671 E11.5 Msun M* Stellar mass from CIGALE output results (Mstar) 1673-1683 E11.5 Msun e_M* Mean uncertainty of M* (Mstar_err) 1685-1701 F17.15 mag Av Extinction coefficient from CIGALE output results (Av) 1703-1713 E11.5 mag e_Av Mean uncertainty of Av (Av_err) 1715-1726 E12.6 --- fAGN AGN fraction luminosity defined as LAGN/(LAGN + LSF) from CIGALE output results (fracAGN) 1728-1739 F12.6 --- e_fAGN Mean uncertainty of fAGN (fracAGN_err) 1741-1756 F16.14 --- qfir ? FIR-to-radio correlation coefficient from CIGALE output results (radio_qfir) 1758-1774 F17.15 --- e_qfir ? Mean uncertainty of qfir (radioqfirerr) -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Luc Trabelsi [CDS] 07-Apr-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line