J/MNRAS/517/2190 Physical properties of ∼30000 ASAS-SN EBs (Rowan+, 2022)
The value-added catalogue of ASAS-SN eclipsing binaries parameters of 30000
detached systems.
Rowan D.M., Jayasinghe T., Stanek K.Z., Kochanek C.S., Thompson T.A.,
Shappee B.J., Holoien T.W.-S., Prieto J.L., Giles W.
<Mon. Not. R. Astron. Soc. 517, 2190 (2022)>
=2022MNRAS.517.2190R 2022MNRAS.517.2190R (SIMBAD/NED BibCode)
ADC_Keywords: Binaries, eclipsing ; Photometry ; Stars, variable ; Optical ;
Stars, diameters ; Effective temperatures ; Extinction ;
Stars, distances ; Magnitudes, absolute ; References ;
Cross identifications ; X-ray sources ; Stars, activity
Keywords: surveys - binaries: eclipsing
Abstract:
Detached eclipsing binaries are a fundamental tool for measuring the
physical parameters of stars that are effectively evolving in
isolation. Starting from more than 40000 eclipsing binary candidates
identified by the All-Sky Automated Survey for Supernovae (ASAS-SN),
we use PHOEBE to determine the sum of the fractional radii, the ratio
of effective temperatures, the inclinations, and the eccentricities
for 35576 systems. We visually inspect all the light-curve models to
verify the model fits and examine the TESS light curves, when
available, to select systems with evidence for additional physics,
such as spots, mass transfer, and hierarchical triples. We examine the
distributions of the eclipsing binary model parameters and the orbital
parameters. We identify two groups in the sum of the fractional radii
and effective temperature ratio parameter space that may distinguish
systems approaching the semidetached limit. Combining Gaia EDR3 with
extinction estimates from three-dimensional dust maps, we examine the
properties of the systems as a function of their absolute magnitude
and evolutionary state. Finally, we present light curves of selected
eclipsing binaries that may be of interest for follow-up studies.
Description:
In this study, we provide our expertise on ∼35000 detached EBs light
curves taken from studies like Jayasinghe et al. (2018MNRAS.477.3145J 2018MNRAS.477.3145J
and 2019MNRAS.486.1907J 2019MNRAS.486.1907J, Cat. II/366) which give us ASAS-SN
observations in g and V bands with expanded three additional quadruple
telescope units. After period updates as detailed in section 2.2 and
EBs with long-term trends identification 2.3 resulting to EB sources
spanning a wide range of periods from 0.35 d to 484.95 d with a median
of 2.18 d. Then, we modelled lcs with PHOEBE (procedure in section
2.4) giving rise to EBs physical properties estimations as
(ρ1+ρ2, Teff2/Teff1, e, ω, i, t0). More, we provide lc
models optimizations with Alarm statistic for g and V bands (i.e
section 2.5). Finally, we visually inspect all 40728 lc solutions, and
select 35576 solutions for our final catalogue.
The final catalogue presented in table.dat regroups lc models physical
parameters, refined periods, optimization statistics alarm and Χ2,
classification flags (e.g quality cuts, star's activity) and
evolutionary states (i.e section 2.6), median g-band and V-band lc
magnitudes and amplitudes, photometric Gaia measurements and dust
extinctions used for EBs parameters distributions analysis (i.e
section 3 and more about ASAS-SN databases on
https://asas-sn.osu.edu/binaries). More, we include results from X-ray
data bases cross-matchs (i.e see more on section 3.5) as luminosities,
observational informations and literature references (i.e see more
X-ray databases on
https://heasarc.gsfc.nasa.gov/W3Browse/all/xray.html).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table.dat 670 35576 Detached EBs model fit property results,
multiple bands photometry and X-ray luminosities
--------------------------------------------------------------------------------
See also:
J/MNRAS/507/104 : Ellipsoidal variables in ASAS-SN catalog (Rowan+, 2021)
J/MNRAS/503/3975 : Var., period. and contact binaries in WISE
(Petrosky+, 2021)
J/MNRAS/499/5508 : Search for variable subdwarf B stars in TESS I
(Sahoo+, 2020)
J/MNRAS/378/179 : Eclipsing Binary with Eccentric Orbits Catalog
(Bulut+, 2007)
J/A+A/648/A113 : Kepler red giants in eclipsing binaries RVs
(Benbakoura+, 2021)
J/A+A/609/A46 : Light curves 0f 6 MC eclipsing binaries
(Jurysek+, 2018)
J/A+A/606/A92 : Gaia LMC eclipsing binary and multiple systems
(Mowlavi+, 2017)
J/A+A/591/A111 : ellc:a fast, flexible light curve model (Maxted, 2016)
J/A+A/495/231 : Multiwavelength study of Cyg OB2 5 (Linder+, 2009)
J/A+A/453/635 : Modelling the Galactic Interstellar Extinction
(Marshall+, 2006)
J/A+A/397/147 : Activity-rotation relationship in stars (Pizzolato+ 2003)
J/AJ/154/105 : Parameters of 529 Kepler eclipsing binaries
(Kjurkchieva+, 2017)
J/AJ/154/216 : Radial velocities of 41 Kepler eclipsing binaries
(Matson+, 2017)
J/AJ/151/68 : Kepler Mission. VII. Eclipsing binaries in DR3
(Kirk+, 2016)
J/AJ/142/160 : Kepler Mission. II. Eclipsing binaries in DR2
(Slawson+, 2011)
J/AJ/141/78 : Low-mass eclipsing binaries in KIC (Coughlin+, 2011)
J/AJ/141/83 : Kepler Mission. I. Eclipsing binaries in DR1 (Prsa+,2011)
J/ApJ/912/123 : TESS EBs in the southern hemisphere (Justesen+, 2021)
J/ApJ/867/105 : ATLAS all-sky stellar ref. catalog, ATLAS-REFCAT2
(Tonry+, 2018)
J/ApJ/860/1 : Radial velocity measurements of 20 EBs in LMC
(Graczyk+, 2018)
J/ApJ/788/48 : X-ray through NIR photometry of NGC 2617 (Shappee+, 2014)
J/ApJS/262/12 : Kepler P<2d close binaries (Kobulnicky+, 2022)
J/ApJS/258/16 : TESS Eclipsing Binary stars. I. Sectors 1-26 (Prsa+,2022)
J/ApJS/255/1 : Morphology of OGLE LCs of Eclipsing binaries (Bodi+,2021)
J/ApJS/235/41 : Galactic EB stars with eccentric orbits based on ETDs
(Kim+, 2018)
J/ApJS/208/9 : Intrinsic colors and temperatures of PMS stars
(Pecaut+, 2013)
J/ApJS/190/1 : A survey of stellar families (Raghavan+, 2010)
J/AcA/66/405 : Galactic bulge eclipsing & ellipsoidal binaries
(Soszynski+, 2016)
J/AcA/63/323 : OGLE-III SMC eclipsing binary stars (Pawlak+, 2013)
J/AcA/63/115 : OGLE-III Galactic disk eclipsing binaries
(Pietrukowicz+, 2013)
J/AcA/62/67 : ASAS photometry of ROSAT sources (Kiraga, 2012)
J/AcA/61/103 : VI light curves of LMC eclipsing binaries
(Graczyk+, 2011)
J/AcA/58/405 : ASAS eclipsing binaries with RASS counterpart
(Szczygiel+, 2008)
J/other/A+ARV/18.67 : Accurate masses and radii of normal stars (Torres+, 2010)
J/other/Sci/337.444 : RV curves of Galactic massive O stars (Sana+, 2012)
B/sb9 : SB9:9th Catalogue of Spectroscopic Binary Orbits
(Pourbaix+ 2004-2014)
IX/58 : 2SXPS Swift X-ray telescope point source catalogue
(Evans+, 2020)
IX/10 : ROSAT All-Sky Bright Source Catalogue (1RXS)
(Voges+, 1999)
V/122 : SB9:9th Catalogue of Spectroscopic Binary Orbits
(Pourbaix+ 2005)
I/352 : Distances to 1.47 billion stars in Gaia EDR3
(Bailer-Jones+, 2021)
I/350 : Gaia EDR3 (Gaia Collaboration, 2020)
I/337 : Gaia DR1 (Gaia Collaboration, 2016)
II/366 : ASAS-SN catalog of variable stars
(Jayasinghe+, 2018-2020)
II/264 : ASAS Variable Stars in Southern hemisphere
(Pojmanski+, 2002-2005)
Byte-by-byte Description of file: table.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 19 A19 --- ID Internal ASAS-SN identifier (id) (1)
21- 38 F18.16 --- (R1+R2)/a The sum of fractionnal radii R1/a + R2/a
as ρ1 + ρ2 relative to
semi-major axis (requivsumfrac)
40- 58 F19.17 --- Teff2/Teff1 The ratio of binary effective
temperatures Teff,2/Teff,1 (teffratio)
60- 79 F20.16 d Per Orbital period of binary (period)
81-102 E22.17 --- e Orbital eccentricity (ecc)
104-125 E22.17 deg Omega Argument of periastron ω as a
component of binary system orbital
elements (per0)
127-144 F18.15 deg i Orbital inclination of the binary system
(incl)
146-165 F20.13 d t0 Time of superior conjunction t0 of the
binary system given in +2456000 days UTC
calendar (t0supconj)
167-189 E23.17 --- Statg ? The Alarm statistic for g-band light
curve Ag (alarm_g) (2)
191-212 E22.17 --- Statv ? The Alarm statistic for V-band light
curve Av (alarm_v) (2)
214-233 F20.16 --- Chi2 The reduced chi2_ν given for the
optimized solution of model fit
(reduced_chi2)
235-252 F18.15 mag gmag Median g-band magnitude (median_g)
254-271 F18.15 mag Vmag Median V-band magnitude (median_v)
273-290 F18.16 mag Ampg Amplitude of g-band light curve
(amplitude_g)
292-310 F19.16 mag AmpV Amplitude of V-band light curve
(amplitude_v)
312-316 A5 --- RotFlag Long-term trends associated with spot
modulation as in section 2.3, false for
34977 and true for 599 sources (rot_flag)
318-336 A19 --- ASASSN ASAS-SN identifier (JHHMMSS.ss+DDMMSS.s)
(asassn_name)
338-346 F9.5 deg RAdeg Right ascension (J2000) (raj2000)
348-356 F9.5 deg DEdeg Declination (J2000) (dej2000)
358-366 F9.6 mag Gmag ? Gaia G-band mean magnitude
(photgmean_mag)
368-376 F9.6 mag BP-RP ? Gaia GBP - GRP magnitude (bp_rp)
378-396 F19.16 mag ABP ? BP band extinction estimates with the
model mwdust 3D dust map from Bovy et al.
2016ApJ...818..130B 2016ApJ...818..130B (mwdust_abp)
398-416 F19.16 mag ARP ? RP band extinction estimates with the
model mwdust 3D dust map from Bovy et al.
2016ApJ...818..130B 2016ApJ...818..130B (mwdust_arp)
418-436 F19.16 mag AG ? G band extinction estimates with the
model mwdust 3D dust map from Bovy et al.
2016ApJ...818..130B 2016ApJ...818..130B (mwdust_ag)
438-456 F19.16 mag AV ? V band extinction estimates with the
model mwdust 3D dust map from Bovy et al.
2016ApJ...818..130B 2016ApJ...818..130B (mwdust_av)
458-470 F13.7 pc rpgeo ? Median of the photogeometric distance
posterior from Bailer-Jones et al.
2021AJ....161..147B 2021AJ....161..147B, Cat. I/352 (rpgeo)
472-480 F9.4 --- RPlx ? GaiaEDR3 parallax divided by its error
(parallaxovererror)
482-503 E22.17 --- GaiaDR3 ? Gaia DR3 source ID troncated value in
1e+18 scale (source_id)
505-527 E23.20 mag BP-RPcor ? Extinction corrected BP-RP color
(bprpcorrected)
529-551 E23.20 mag GMag ? Absolute gaia G band magnitude
corrected for extinction using mwdust
values (absolute_g)
553-557 A5 --- GaiaEDR3 Flag to indicate if it passsed Gaia cuts
as RPlx>10 and Plx>0, false for 8222 and
true 27354 for cases (gaia_filter)
559-571 A13 --- Heasarc Name of X-ray database from cross-match
(heasarc_database) (3)
573-582 A10 --- Obs Name of X-ray observatory
(xray_observatory) (4)
584-592 F9.1 s ExpTime ? Length of X-ray exposure ranging from 4
to 1898683 seconds (xray_exposure)
594-611 F18.16 arcsec Sep ? Sky separation of X-ray detection and
optical ASAS-SN target positions
(xray_separation)
613-638 A26 --- r_Heasarc Literature reference of Heasarc X-ray
database names (xraycitationkey) (5)
640-661 E22.17 10-7W LX ? X-ray luminosity (xray_luminosity) (6)
663-664 A2 --- Class Evolutionary state (state) (7)
666-670 A5 --- f_LX Flag indicates if has X-ray detection
which is false for 34781 sources and true
795 for sources (xray_flag)
--------------------------------------------------------------------------------
Note (1): Identifier number NNNNNNNN for 34268 sources or designation AVNNNNNN
for 139 sources and JHHMMSS.ss±DDMMSS.s for 1169 sources.
Note (2): As defined in equation 1 of the section 2.5 Visual inspection,
hereafter PHOEBE model ASAS-SN light curves (i.e see section 2.4),
we visually inspect all 40728 light-curve solutions to identify
systems that require additional optimization or have found a local
minimum. In addition to evaluating the Χ2 of the solution, we
consider the alarm statistic defined by Tamuz, Mazeh & North
(2006MNRAS.367.1521T 2006MNRAS.367.1521T).
Note (3): As exposed in section 3.5, we follow a similar procedure and match
our catalogue of detached eclipsing binaries to the HEASARC Master
X-ray catalogue (645 cross-matched,
https://heasarc.gsfc.nasa.gov/W3Browse/all/xray.html) and the
Swift-XRT Point Source Catalog (150 cross-matched, Evans et al.
2020ApJS..247...54E 2020ApJS..247...54E, Cat. IX/58), both with a search radius of
10.0 arcsec. We identify 795 unique targets with X-ray detections.
Note (4): Related to Heasarc X-ray database, these are the list of involved
X-ray observatory as follows:
CHANDRA = Chandra X-ray Observatory, 107 sources in our sample
ROSAT = ROentgen SATellite X-ray observatory,
198 sources in our sample
SWIFT = Swift Gamma-Ray Burst Explorer X-ray Observatory,
157 sources in our sample
XMM-NEWTON = XMM-Newton high throughput X-ray spectroscopy
Multi-Mirror mission, 332 sources in our sample
EINSTEIN = Einstein High Energy Astrophysical Observatory,
1 source in our sample
Note (5): The related references to X-ray database names Heasarc are as follows:
Agueros09 = Agueros et al. 2009ApJS..181..444A 2009ApJS..181..444A, Cat. J/ApJS/181/444,
RASSDSSTAR, ROSAT, 1 source in our sample
Greiner15 = Greiner et al. 2015A&A...575A..42G 2015A&A...575A..42G, Cat. J/A+A/575/A42,
RASS2FXRAY, ROSAT, 1 source in our sample
Harris96 = Harris et al. 1994, Cat. IX/13,
EINSTEIN2E, EINSTEIN, 1 source in our sample
Muno09 = Muno et al. 2009ApJS..181..110M 2009ApJS..181..110M, Cat. J/ApJS/181/110,
GALCENCXO, CHANDRA, 1 source in our sample
Rosat00 = Rosat, Consortium 2000yCat.9030....0R 2000yCat.9030....0R, Cat. IX/30,
ROSPSPCF, ROSAT, 1 source in our sample
Voges99 = Vosges et al. 1999A&A...349..389V 1999A&A...349..389V, Cat. IX/10,
RASSBSC, ROSAT, 1 source in our sample
Henry06 = Henry et al. 2006ApJS..162..304H 2006ApJS..162..304H, Cat. J/ApJS/162/304,
ROSNEPXRAY, ROSAT, 2 sources in our sample
Kiraga12 = Kiraga et al. 2012AcA....62...67K 2012AcA....62...67K, Cat. J/AcA/62/67,
RASSASASPV, ROSAT, 2 sources in our sample
Wang16 = Wang et al. 2016ApJS..224...40W 2016ApJS..224...40W, Cat. J/ApJS/224/40,
XOGSGSRC, CHANDRA, 3 sources in our sample
Rutledge00 = Rutledge et al. 2000ApJS..131..335R 2000ApJS..131..335R
RASSUSNOID, ROSAT, 4 sources in our sample
Salvato18 = Salvato et al. 2018MNRAS.473.4937S 2018MNRAS.473.4937S,
Cat. J/MNRAS/473/4937, NWAYAWGROS, ROSAT,
4 sources in our sample
Broos11 = Broos et al. 2011ApJS..194....2B 2011ApJS..194....2B, Cat. J/ApJS/194/2,
CARINACXO, CHANDRA, 5 sources in our sample
Micka06 = Mickaelian et al. 2006A&A...449..425M 2006A&A...449..425M,
Cat. J/A+A/449/425, BHRFSCID, ROSAT,
5 sources in our sample
Dai15 = Dai et al. 2015ApJS..218....8D 2015ApJS..218....8D, Cat. J/ApJS/218/8,
SACSTPSCAT, SWIFT, 7 sources in our sample
Panzera03 = Panzera et al. 2003A&A...399..351P 2003A&A...399..351P, Cat. IX/34,
BMWHRICAT, ROSAT, 10 sources in our sample
Voges00 = Voges et al. 2000IAUC.7432R...1V 2000IAUC.7432R...1V, Cat. IX/29,
RASSFSC, ROSAT, 14 sources in our sample
Ptak03 = Ptak et al. 2003ASPC..295..465P 2003ASPC..295..465P,
CXOXASSIST, CHANDRA, 15 sources in our sample
ROSATSc = Rosat scientific team, 2000yCat.9030....0R 2000yCat.9030....0R, Cat. IX/30,
ROSPSPC, ROSAT, 23 sources in our sample
Dickey90 = Dickey & Lockman 1990ARA&A..28..215D 1990ARA&A..28..215D,
WGACAT, ROSAT, 27 sources in our sample
White94a = White et al. 1994IAUC.6100....1W 1994IAUC.6100....1W,
WGACAT, ROSAT, 27 sources in our sample
White94b = White et al. 1994AAS...185.4111W 1994AAS...185.4111W,
WGACAT, ROSAT, 27 sources in our sample
Saxton08 = Saxton et al. 2008A&A...480..611S 2008A&A...480..611S, Cat. J/A+A/480/611,
XMMSLEWCLN, XMM-NEWTON, 37 sources in our sample
Evans10 = Evans et al. 2024ApJS..274...22E 2024ApJS..274...22E, Cat. IX/70,
CSC, CHANDRA, 83 sources in our sample
Boller16 = Boller et al. 2016A&A...588A.103B 2016A&A...588A.103B, Cat. J/A+A/588/A103,
RASS2RXS, ROSAT, 103 sources in our sample
Traulsen20 = Traulsen et al. 2020A&A...641A.137T 2020A&A...641A.137T,
Cat. IX/61, IX/64, IX/66,
XMMSTACK, XMM-NEWTON, 127 sources in our sample
Evans20 = Evans et al. 2020ApJS..247...54E 2020ApJS..247...54E, Cat. IX/58,
2SXPS, SWIFT, 150 sources in our sample
Webb20 = Webb et al. 2020A&A...641A.136W 2020A&A...641A.136W,
Cat. IX/59, IX/63, IX/65, IX/68, IX/69
XMMSSC, XMM-NEWTON, 168 sources in our sample
Note (6): As expressed in section 3.5, We identify 795 unique targets with
X-ray detections, including 284 targets with multiple detections.
LX luminosity are computed using the GaiaEDR3 parallax and the
'Sep' quantities.
Note (7): Evolutionary states are as follows:
ms = Main sequence stars, 22469 sources in our sample
rg = Red giant stars, 654 sources in our sample
sg = Subgiant stars, 4231 sources in our sample
As explained in section 2.6, since the eclipse probability increases
with radius, we expect a relatively high fraction of subgiants
despite the shorter time-scale of the evolutionary state. Given the
CMD, we separate the main sequence, subgiant, and red giant stars
using MIST isochrones.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Luc Trabelsi [CDS] 14-Oct-2025