J/MNRAS/518/3055 Gaia white dwarfs within 40pc. III (O'Brien+, 2023)
Gaia white dwarfs within 40 pc.
III. Spectroscopic observations of new candidates in the Southern hemisphere.
O'Brien M.W., Tremblay P.-E., Gentile Fusillo N.P., Hollands M.A.,
Gansicke B.T., Koester D., Pelisoli I., Cukanovaite E., Cunningham T.,
Doyle A.E., Elms A., Farihi J., Hermes J.J., Holberg J., Jordan S.,
Klein B.L., Kleinman S.J., Manser C.J., De Martino D., Marsh T.R.,
McCleery J., Melis C., Nitta A., Parsons S.G., Raddi R.,
Rebassa-Mansergas A., Schreiber M.R., Silvotti R., Steeghs D., Toloza O.,
Toonen S., Torres S., Weinberger A.J., Zuckerman B.
<Mon. Not. R. Astron. Soc., 518, 3055-3073 (2023)>
=2023MNRAS.518.3055O 2023MNRAS.518.3055O (SIMBAD/NED BibCode)
ADC_Keywords: Stars, white dwarf ; Spectral types ; Optical ;
Parallaxes, trigonometric; Effective temperatures ;
Magnetic fields
Keywords: stars: statistics - white dwarfs - solar neighbourhood
Abstract:
We present a spectroscopic survey of 248 white dwarf candidates within
40 pc of the Sun; of these 244 are in the Southern hemisphere.
Observations were performed mostly with the Very Large Telescope
(X-Shooter) and Southern Astrophysical Research Telescope. Almost all
candidates were selected from Gaia Data Release 3 (DR3). We find a
total of 246 confirmed white dwarfs, 209 of which had no previously
published spectra, and two main-sequence star contaminants. Of these,
100 white dwarfs display hydrogen Balmer lines, 69 have featureless
spectra, and two show only neutral helium lines. Additionally, 14
white dwarfs display traces of carbon, while 37 have traces of other
elements that are heavier than helium. We observe 35 magnetic white
dwarfs through the detection of Zeeman splitting of their hydrogen
Balmer or metal spectral lines. High spectroscopic completeness
(> 97 per cent) has now been reached, such that we have 1058 confirmed
Gaia DR3 white dwarfs out of 1083 candidates within 40pc of the Sun at
all declinations.
Description:
We observed a total of 248 white dwarf candidates with parallaxes
plx-eplx>25mas. The majority of targets (181) were observed from the
VLT with the X-Shooter spectrograph, where we employed slit widths of
1.0, 0.9, and 0.9 arcsec in the UVB (3000-5600Å, R=5400), VIS
(5500-10200Å, R=8900) and NIR (10200-24800Å, R=5600) arms,
respectively.
table3 presents newly confirmed white dwarfs within 40pc of the
Sun, with "WDJ" designations based on their J2000 position. A spectral
type followed by a colon represents a tentative classification. We
provide Gaia DR3 IDs where possible.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 172 246 Spectral types and parameters of the
white dwarf sample
table4.dat 43 30 Magnetic field strengths for newly identified
magnetic white dwarfs in the 40pc sample
--------------------------------------------------------------------------------
See also:
I/350 : Gaia EDR3 (Gaia Collaboration, 2020)
J/MNRAS/497/130 : Gaia white dwarfs within 40pc. I (Tremblay+, 2020)
J/MNRAS/499/1890 : Gaia white dwarfs within 40pc. II (McCleery+, 2020)
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- n_Name [*] Note on Name (G1)
3- 24 A22 --- Name WDJ J2000 Name (WDJHHMMSS.ss+DDMMSS.ss)
26- 37 F12.8 deg RAdeg Right Ascension (J2000)
39- 50 F12.8 deg DEdeg Declination (J2000)
52- 58 A7 -- SpType Spectral type (2)
59 A1 --- n_SpType [*] Note on SpType (3)
60- 65 F6.2 mas plx Parallax
67- 70 F4.2 mas e_plx Parallax error (4)
72- 76 I5 K Teff ?=- 3D Spectro effective temperature from
fitted Balmer line parameters
78- 80 I3 K e_Teff ? 3D Spectro effective temperature error (4)
82- 86 F5.3 [cm/s2] logg ?=- 3D Spectro surface gravity
from fitted Balmer line parameters
88- 92 F5.3 [cm/s2] e_logg ? 3D Spectro surface gravity error (4)
94- 98 I5 K TeffG ?=- Gaia effective temperature
100-103 I4 K e_TeffG ? Gaia effective temperature error (4)
105-108 F4.2 [cm/s2] loggG ?=- Gaia surface gravity
110-113 F4.2 [cm/s2] e_loggG ? Gaia surface gravity error (4)
115-130 A16 --- Note Note
132 A1 --- Ref Reference (5)
134-152 I19 --- GaiaDR3 ? Gaia DR3 ID
154-172 A19 --- Bibcode Bibcode for any previously published
spectral type
--------------------------------------------------------------------------------
Note (2): A spectral type followed by a colon represents a tentative
classification.
Note (3): * indicates we have updated the classification in this work.
Note (4): All quoted uncertainties represent the intrinsic fitting errors.
Note (5): References as follows:
a = Landstreet & Bagnulo (2019A&A...628A...1L 2019A&A...628A...1L)
b = Tremblay et al. (2020MNRAS.497..130T 2020MNRAS.497..130T, Cat. J/MNRAS/497/130) Paper I
c = Subasavage et al. (2017AJ....154...32S 2017AJ....154...32S, Cat. J/AJ/154/32)
d = Subasavage et al. (2008AJ....136..899S 2008AJ....136..899S)
e = Subasavage et al. (2007AJ....134..252S 2007AJ....134..252S, Cat. J/AJ/134/252)
f = Kuelebi et al. (2010A&A...524A..36K 2010A&A...524A..36K)
g = Kilic et al. (2020MNRAS.493.2805K 2020MNRAS.493.2805K)
h = Barstow et al. (1995MNRAS.277..971B 1995MNRAS.277..971B)
i = Reid & Gizis (2005PASP..117..676R 2005PASP..117..676R, Cat. J/PASP/117/676)
j = Bedard, Bergeron & Fontaine (2017ApJ...848...11B 2017ApJ...848...11B, cat. J/ApJ/848/11)
k = Scholz et al. (2000A&A...353..958S 2000A&A...353..958S,Cat. J/A+A/353/958)
l = Gianninas et al. (2011ApJ...743..138G 2011ApJ...743..138G, Cat. J/ApJ/743/138)
m = Blouin et al. (2019ApJ...878...63B 2019ApJ...878...63B, Cat. J/ApJ/878/63)
n = O'Donoghue et al. (2013MNRAS.431..240O 2013MNRAS.431..240O, Cat. J/MNRAS/431/240)
o = Kepler et al. (2000BaltA...9..125K 2000BaltA...9..125K)
p = Dufour, Bergeron & Fontaine (2005ApJ...627..404D 2005ApJ...627..404D)
q = Bergeron et al. (2001ApJS..133..413B 2001ApJS..133..413B, Cat. J/ApJS/133/413)
r = Coutu et al. (2019ApJ...885...74C 2019ApJ...885...74C, Cat. J/ApJ/885/74)
s = Hollands et al. (2017MNRAS.467.4970H 2017MNRAS.467.4970H, Cat. J/MNRAS/467/4970)
t = Dupuis et al. (1994, in American Astronomical Society Meeting Abstracts,
Vol. 184., AAS. Minneapolis, Minnesota, USA, p.29.01I h)
u = Bagnulo & Landstreet (2021MNRAS.507.5902B 2021MNRAS.507.5902B)
v = Kirkpatrick et al. (2016ApJS..224...36K 2016ApJS..224...36K, Cat. J/ApJS/224/36)
w = Raddi et al. (2017MNRAS.472.4173R 2017MNRAS.472.4173R, Cat. J/MNRAS/472/4173)
x = Bergeron et al. (2021AJ....162..188B 2021AJ....162..188B, Cat. J/AJ/162/188)
y = Elms et al. (2022MNRAS.517.4557E 2022MNRAS.517.4557E)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- n_Name [*] Note on Name (G1)
3- 24 A22 --- Name WDJ J2000 Name (WDJHHMMSS.ss+DDMMSS.ss)
26- 29 A4 --- SpType Spectral type
31 A1 --- l_ Limit flag on
32- 37 F6.2 MG Mean magnetic field
39- 43 F5.2 MG e_ ? Mean magnetic field error
--------------------------------------------------------------------------------
Global notes:
Note (G1): Objects with an asterisk before their name have a parallax value
outside of 40pc but may still be within that volume at 1σ.
--------------------------------------------------------------------------------
Acknowledgements:
Mairi O'Brien, Mairi.O-Brien(at)warwick.ac.uk
References:
Tremblay et al., Paper I 2020MNRAS.497..130T 2020MNRAS.497..130T, Cat. J/MNRAS/497/130
McCleery et al., PaperII 2020MNRAS.499.1890M 2020MNRAS.499.1890M, Cat, J/MNRAS/499/1890
(End) Patricia Vannier [CDS] 20-Jul-2023