J/MNRAS/520/4089    Millimeter-wave spectrum of 2-propanimine       (Zou+, 2023)

Millimeter-wave spectrum of 2-propanimine. Zou L., Guillemin J.-C., Belloche A., Jorgensen J.K., Margules L., Motiyenko R.A., Groner P. <Mon. Not. R. Astron. Soc. 520, 4089-4102 (2023)> =2023MNRAS.520.4089Z 2023MNRAS.520.4089Z (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics ; Spectroscopy Keywords: astrochemistry - molecular data - ISM: molecules - methods: laboratory: molecular Abstract: Up to date, only six imines have been detected in the interstellar medium. The 3-carbon imine, 2-propanimine ((CH3)2C=NH), is predicted to be the structural isomer with the lowest energy in the C3H7N group, and appears to be a good candidate for astronomical searches. Unexpectedly, no microwave or millimeter wave spectrum is available for 2-propanimine. In this work, we provide the first high-resolution millimeter wave spectrum of 2-propanimine and its analysis. With the guide of this laboratory measurement, we aim to search for 2-propanimine in two molecule-rich sources Sgr B2(N) and IRAS 16293-2422 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). Starting from a synthesized sample, we measured the spectrum of 2-propanimine from 50 to 500GHz, and the ground state lines are successfully assigned and fitted using XIAM and ERHAM programs with the aid of theoretical calculations. The barriers to internal rotation of the two CH3 tops are determined to be 531.956(64)cm-1 and 465.013(26)cm-1 by XIAM. These data are able to provide reliable prediction of transition frequencies for astronomical search. Although a few line matches exist, no confirmed detection of 2-propanimine has been found in the hot molecular core Sgr B2(N1S) and the Class 0 protostar IRAS 16293B. Upper-limits of its column density have been derived, and indicate that 2-propanimine is at least 18 times less abundant than methanimine in Sgr B2(N1S), and is at most 50-83 per cent of methanimine in IRAS 16293B. Description: The measure frequency line list and the prediction of 2-propanimine [(CH3)_2C=NH] for the ground state. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 58 27259 2-propanimine measured frequency table4.dat 75 90812 2-propanimine prediction up to 1 THz -------------------------------------------------------------------------------- See also: J/ApJ/853/139 : 1-(Z)-1-propanimine rotational transitions (Sil+, 2018) J/A+A/663/A132 : 1-propanimine measured freq. and residuals (Margules+, 2022) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 -- J'' Quantum number J of the upper state 4- 6 I3 -- Ka'' Quantum number Ka of the upper state 7- 9 I3 -- Kc'' Quantum number Kc of the upper state 10- 12 I3 -- s1 Quantum number sigma_1 13- 15 I3 -- J' Quantum number J of the lower state 16- 18 I3 -- Ka' Quantum number Ka of the lower state 19- 21 I3 -- Kc' Quantum number Kc of the lower state 22- 24 I3 -- s2 Quantum number sigma_2 25- 36 F12.3 MHz Freq Line frequency observed 37- 43 F7.3 MHz e_Freq Line frequency uncertainty 44- 50 F7.3 MHz RelInt Relative intensity for blended lines (1) 51- 58 F8.4 MHz Diff Frequency difference (obs - calc) -------------------------------------------------------------------------------- Note (1): For single lines, the relative intensity is always unity (1.00). For blended lines, the sum of the relative intensities is unity (1.00). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 13 F13.4 MHz Freq Frequency of the line (1) 14- 21 F8.4 MHz e_Freq Estimated error 22- 29 F8.4 [nm+2.MHz] logInt Base 10 log of the integrated intensity (3) 30- 31 I2 -- DR Degrees of freedom 32- 41 F10.4 cm-1 Elo Lower state energy 42- 44 I3 -- Gup Upper state degeneracy (3) 45- 51 I7 -- TAG Species tag 52- 55 I4 -- QNFMT Quantum number (QN) format identifier (2) 56- 57 I2 -- J'' QN J of the upper state 58- 59 I2 -- Ka'' QN Ka of the upper state 60- 61 I2 -- Kc'' QN Kc of the upper state 62- 63 I2 -- s1 QN sigma_1 68- 69 I2 -- J' QN J of the lower state 70- 71 I2 -- Ka' QN Ka of the lower state 72- 73 I2 -- Kc' QN Kc of the lower state 74- 75 I2 -- s2 QN sigma_2 -------------------------------------------------------------------------------- Note (1): prediction up to J=80 and 1 THz. Hyperfine splitting (maximum splitting ∼500kHz) is NOT included. Note (2): output using the CALPGM/SPCAT format. Documentation can be found in https://spec.jpl.nasa.gov/ftp/pub/calpgm/spinv.pdf Note (3): logInt & Gup calculated using reduced spin weight of 8, and partition function 353614.251 at 300K. To get full spin weight of 6 H-atoms multiply the GUP and partition function simultaneously by 8. -------------------------------------------------------------------------------- Acknowledgements: Luyao Zou, luyao.zou(at)lisa.ipsl.fr
(End) Luyao Zou [Univ. Lille], Patricia Vannier [CDS] 18-Jan-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line