J/MNRAS/538/3284 3D NLTE abundances of metals (Storm+, 2025)
Observational constraints on the origin of the elements. IX.
3D NLTE abundances of metals in the context of Galactic Chemical Evolution
Models and 4MOST.
Storm N., Bergemann M., Eitner P., Hoppe R., Kemp A.J., Ruiter A.J.,
Janka H.-T., Sieverding A., De Mink S.E., Seitenzahl I.R., Owusu E.K.
<Mon. Not. R. Astron. Soc. 538, 3284 (2025)>
=2025MNRAS.538.3284S 2025MNRAS.538.3284S (SIMBAD/NED BibCode)
ADC_Keywords: Spectroscopy ; Abundances ; Milky Way ; Models, atmosphere
Keywords: line: formation - radiative transfer - stars: abundances -
stars: atmospheres - Galaxy: disc - Galaxy: evolution
Abstract:
Historically, various methods have been employed to understand the origin of
the elements, including observations of elemental abundances which have been
compared to Galactic Chemical Evolution (GCE) models. It is also well known
that 1D Local Thermodynamic Equilibrium (LTE) measurements fail to
accurately capture elemental abundances. Non-LTE (NLTE) effects may play a
significant role, and neglecting them leads to erroneous implications in
galaxy modelling. In this paper, we calculate 3D NLTE abundances of seven
key iron-peak and neutron-capture elements (Mn, Co, Ni, Sr, Y, Ba, Eu) based
on carefully assembled 1D LTE literature measurements, and investigate their
impact within the context of the OMEGA+ GCE model. Our findings reveal that
3D NLTE abundances are significantly higher for iron-peak elements at
[Fe/H]←3, with (for the first time ever) [Ni/Fe] and (confirming previous
studies) [Co/Fe] on average reaching 0.6-0.8dex, and [Mn/Fe] reaching
-0.1dex, which current 1D core-collapse supernova (CCSN) models cannot
explain. We also observe a slightly higher production of neutron-capture
elements at low metallicities, with 3D NLTE abundances of Eu being higher
by +0.2dex at [Fe/H]=-3. 3D effects are most significant for iron-peak
elements in the very metal-poor regime, with average differences between
3D NLTE and 1D NLTE reaching up to 0.15dex. Thus, ignoring 3D NLTE effects
introduces significant biases, so including them should be considered
whenever possible.
Description:
In the following tables, we present the stellar parameters and 1D LTE
abundances of the stars taken from the literature, as well as our the
3D NLTE corrected abundances for the elements Mn, Co, Ni, Sr, Y, Ba,
and Eu, and 1D NLTE abundances for C based on CH G-band measurements.
Fe abundances are corrected for 3D LTE effects, except for Bensby's
and Hansen's stars, which are 1D NLTE. We also present 1D LTE
equivalent widths (EW) for synthetic spectra of MARCS models, and 3D
LTE and NLTE equivalent widths for synthetic spectra of STAGGER
models. The equivalent widths can be used to calculate the corrections
for 3D NLTE effects.
See also:
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
all_data.dat 148 746 Stellar parameters and abundances of the stars
taken from the literature
ew1dlte.dat 42 1673370 Calculated equivalent widths (EW) in 1D LTE for
synthetic spectra of MARCS models
ew_3d.dat 43 42525 Calculated equivalent widths (EW) in 3D LTE and
NLTE for synthetic spectra of STAGGER models
--------------------------------------------------------------------------------
Byte-by-byte Description of file: all_data.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- Name Stellar name, as in the original source
14- 19 F6.1 K Teff Effective temperature
21- 24 F4.2 [cm/s2] logg Surface gravity
26- 31 F6.3 [-] [Fe/H] Abundance ratio Fe/H 3D LTE/1D NLTE (1)
33- 36 F4.2 km/s vmic Microturbulence velocity ξ
38- 43 F6.3 [-] [Mn/Fe]1D-LTE ? Abundance ratio Mn/Fe in 1D LTE
45- 50 F6.3 [-] [Mn/Fe]3D-NLTE ? Abundance ratio Mn/Fe in 3D NLTE
52- 57 F6.3 [-] [Co/Fe]1D-LTE ? Abundance ratio Co/Fe in 1D LTE
59- 64 F6.3 [-] [Co/Fe]3D-NLTE ? Abundance ratio Co/Fe in 3D NLTE
66- 71 F6.3 [-] [Ni/Fe]1D-LTE ? Abundance ratio Ni/Fe in 1D LTE
73- 78 F6.3 [-] [Ni/Fe]3D-NLTE ? Abundance ratio Ni/Fe in 3D NLTE
80- 85 F6.3 [-] [Sr/Fe]1D-LTE ? Abundance ratio Sr/Fe in 1D LTE
87- 92 F6.3 [-] [Sr/Fe]3D-NLTE ? Abundance ratio Sr/Fe in 3D NLTE
94- 98 F5.2 [-] [Y/Fe]1D-LTE ? Abundance ratio Y/Fe in 1D LTE
100-105 F6.3 [-] [Y/Fe]3D-NLTE ? Abundance ratio Y/Fe in 3D NLTE
107-112 F6.3 [-] [Ba/Fe]1D-LTE ? Abundance ratio Ba/Fe in 1D LTE
114-119 F6.3 [-] [Ba/Fe]3D-NLTE ? Abundance ratio Ba/Fe in 3D NLTE
121-125 F5.2 [-] [Eu/Fe]1D-LTE ? Abundance ratio Eu/Fe in 1D LTE
127-132 F6.3 [-] [Eu/Fe]3D-NLTE ? Abundance ratio Eu/Fe in 3D NLTE
134-139 F6.3 [-] [C/Fe]1D-LTE ? Abundance ratio C/Fe in 1D LTE
141-146 F6.3 [-] [C/Fe]1D-NLTE ? Abundance ratio C/Fe in 1D NLTE
148 A1 --- Ref Literature source of the data (2)
--------------------------------------------------------------------------------
Note (1): 1D NLTE for sources 0 and 2, 3D LTE otherwise
Note (2): Literature source of the data as follows:
0 = Bensby et al., 2014A&A...562A..71B 2014A&A...562A..71B, Cat. J/A+A/562/A71 ;
Battistini & Bensby, 2015A&A...577A...9B 2015A&A...577A...9B, Cat. J/A+A/577/A9,
2016A&A...586A..49B 2016A&A...586A..49B, Cat. J/A+A/586/A49
1 = Bonifacio et al., 2009A&A...501..519B 2009A&A...501..519B, Cat. J/A+A/501/519
2 = Hansen et al., 2013A&A...551A..57H 2013A&A...551A..57H
3 = Li et al., 2022ApJ...931..147L 2022ApJ...931..147L, Cat. J/ApJ/931/147
4 = Mardini et al., 2024MNRAS.528.2912M 2024MNRAS.528.2912M
5 = Zhao et al., 2016ApJ...833..225Z 2016ApJ...833..225Z, Cat. J/ApJ/833/225
--------------------------------------------------------------------------------
Byte-by-byte Description of file: ew1dlte.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 A2 --- Element Element symbol
4- 7 I4 0.1nm Line Wavelength in Angstroms
9- 12 F4.1 [-] [X/Fe] Abundance ratio X/Fe
14- 17 I4 K Teff Effective temperature
19- 21 F3.1 [cm/s2] logg Surface gravity
23- 26 F4.1 [-] [Fe/H] Abundance ratio Fe/H
28- 31 F4.2 km/s vmic Microturbulence velocity ξ
33- 42 F10.6 0.1pm EW-1D-LTE Equivalent width in 1D LTE
--------------------------------------------------------------------------------
Byte-by-byte Description of file: ew_3d.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 A2 --- Element Element symbol
4- 7 I4 0.1nm Line Wavelength in Angstroms
9- 13 F5.2 [-] [X/Fe] Abundance ratio X/Fe
15- 18 I4 K Teff Effective temperature
20- 22 F3.1 [cm/s2] logg Surface gravity
24- 27 F4.1 [-] [Fe/H] Abundance ratio Fe/H
29- 35 F7.3 0.1pm EW-3D-LTE Equivalent width in 3D LTE
37- 43 F7.3 0.1pm EW-3D-NLTE Equivalent width in 3D NLTE
--------------------------------------------------------------------------------
Acknowledgements:
Nicholas Storm, storm(at)mpia.de
(End) Patricia Vannier [CDS] 29-Apr-2025