J/MNRAS/538/605     Gaia RVS stellar labels using The Cannon        (Das+, 2025)

The GALAH Survey: Stellar parameters and abundances for 800000 Gaia RVS spectra using GALAH DR4 and The Cannon. Das P.B., Zucker D.B., De Silva G.M., Borsato N.W., Mura-Guzman A., Buder S., Ness M., Nordlander T., Casey A.R., Martell S.L., Bland-Hawthorn J., de Grijs R., Freeman K.C., Kos J., Stello D., Lewis G.F., Hayden M.R., Sharma S. <Mon. Not. R. Astron. Soc. 538, 605 (2025)> =2025MNRAS.538..605D 2025MNRAS.538..605D (SIMBAD/NED BibCode)
ADC_Keywords: Surveys ; Milky Way ; Spectroscopy ; Abundances Keywords: methods: data analysis - methods: statistical - techniques: spectroscopic - surveys - stars: abundances - stars: fundamental parameters Abstract: Analysing stellar parameters and abundances from nearly one million Gaia DR3 Radial Velocity Spectrometer (RVS) spectra poses challenges due to the limited spectral coverage (restricted to the infrared CaII triplet) and variable signal-to-noise ratios of the data. To address this, we use The Cannon, a data-driven method, to transfer stellar parameters and abundances from the GALAH Data Release 4 (DR4; R∼28000) catalogue to the lower resolution Gaia DR3 RVS spectra (R∼11500). Our model, trained on 14484 common targets, predicts parameters such as Teff, logg, and [Fe/H], along with several other elements across approximately 800000 Gaia RVS spectra. We utilise stars from open and globular clusters present in the Gaia RVS catalogue to validate our predicted mean [Fe/H] with high precision (∼0.02-0.10dex). Additionally, we recover the bimodal distribution of [Ti/Fe] versus [Fe/H], reflecting the high and low alpha-components of Milky Way disk stars, demonstrating The Cannon's capability for accurate stellar abundance determination from medium-resolution Gaia RVS spectra. The methodologies and resultant catalogue presented in this work highlight the remarkable potential of the RVS dataset, which by the end of the Gaia mission will comprise spectra of over 200 million stars. Description: We have demonstrated the capability of The Cannon; a data-driven machine learning approach to accurately determine stellar parameters (Teff and logg) and elemental abundances across a multi-dimensional label space, including [Fe/H], [Ca/Fe], [Si/Fe], [Ni/Fe], and [Ti/Fe], for 796633 Gaia DR3 RVS stars using stellar labels from GALAH DR4. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file rvs_gal.dat 431 796633 The Cannon predictions for stellar labels -------------------------------------------------------------------------------- See also: I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022) Byte-by-byte Description of file: rvs_gal.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 I19 --- GaiaDR3 Gaia DR3 source_id 21- 32 F12.7 --- GaiaRVSSNR Signal-to-Noise of RVS spectra 34 A1 --- flagCannon [0/1] Cannon flag (1) 36- 53 F18.13 K Teff Effective temperature 55- 75 F21.16 K e_Teff rms uncertainty on Teff 77- 95 F19.16 [cm/s2] logg Surface gravity 97-119 E23.15 [cm/s2] e_logg rms uncertainty on logg 121-144 E24.16 km/s vsini Broadening velocity 146-164 F19.16 km/s e_vsini rms uncertainty on vsini 166-189 E24.16 [-] [Fe/H] Fe abundance 191-213 E23.15 [-] e_[Fe/H] rms uncertainty on [Fe/H] 215-238 E24.16 [-] [Ca/Fe] Ca abundance 240-262 E23.15 [-] e_[Ca/Fe] rms uncertainty on [Ca/Fe] 264-287 E24.16 [-] [Ti/Fe] Ti abundance 289-311 E23.15 [-] e_[Ti/Fe] rms uncertainty on [Ti/Fe] 313-336 E24.16 [-] [Si/Fe] Si abundance 338-360 E23.15 [-] e_[Si/Fe] rms uncertainty on [Si/Fe] 362-385 E24.16 [-] [Ni/Fe] Ni abundance 387-410 E24.16 [-] e_[Ni/Fe] rms uncertainty on [Ni/Fe] 412-431 F20.16 --- chisq Chi2 value of stellar label fitting -------------------------------------------------------------------------------- Note (1): Cannon Flag as follows: 0 = Label estimates within the acceptable label space of the training sample 1 = Label estimates outside the label space of the training sample -------------------------------------------------------------------------------- Acknowledgements: Pradosh Barun Das, pbdrohan(at)gmail.com
(End) Patricia Vannier [CDS] 05-Feb-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line