J/MNRAS/538/605     Gaia RVS stellar labels using The Cannon        (Das+, 2025)
The GALAH Survey: Stellar parameters and abundances for 800000 Gaia RVS spectra
using GALAH DR4 and The Cannon.
    Das P.B., Zucker D.B., De Silva G.M., Borsato N.W., Mura-Guzman A.,
    Buder S., Ness M., Nordlander T., Casey A.R., Martell S.L.,
    Bland-Hawthorn J., de Grijs R., Freeman K.C., Kos J., Stello D., Lewis G.F.,
    Hayden M.R., Sharma S.
    <Mon. Not. R. Astron. Soc. 538, 605 (2025)>
    =2025MNRAS.538..605D 2025MNRAS.538..605D        (SIMBAD/NED BibCode)
ADC_Keywords: Surveys ; Milky Way ; Spectroscopy ; Abundances
Keywords: methods: data analysis - methods: statistical -
          techniques: spectroscopic - surveys - stars: abundances -
          stars: fundamental parameters
Abstract:
    Analysing stellar parameters and abundances from nearly one million
    Gaia DR3 Radial Velocity Spectrometer (RVS) spectra poses challenges
    due to the limited spectral coverage (restricted to the infrared CaII
    triplet) and variable signal-to-noise ratios of the data. To address
    this, we use The Cannon, a data-driven method, to transfer stellar
    parameters and abundances from the GALAH Data Release 4 (DR4; R∼28000)
    catalogue to the lower resolution Gaia DR3 RVS spectra (R∼11500). Our
    model, trained on 14484 common targets, predicts parameters such as
    Teff, logg, and [Fe/H], along with several other elements across
    approximately 800000 Gaia RVS spectra. We utilise stars from open and
    globular clusters present in the Gaia RVS catalogue to validate our
    predicted mean [Fe/H] with high precision (∼0.02-0.10dex).
    Additionally, we recover the bimodal distribution of [Ti/Fe] versus
    [Fe/H], reflecting the high and low alpha-components of Milky Way disk
    stars, demonstrating The Cannon's capability for accurate stellar
    abundance determination from medium-resolution Gaia RVS spectra. The
    methodologies and resultant catalogue presented in this work highlight
    the remarkable potential of the RVS dataset, which by the end of the
    Gaia mission will comprise spectra of over 200 million stars.
Description:
    We have demonstrated the capability of The Cannon; a data-driven
    machine learning approach to accurately determine stellar parameters
    (Teff and logg) and elemental abundances across a multi-dimensional
    label space, including [Fe/H], [Ca/Fe], [Si/Fe], [Ni/Fe], and [Ti/Fe],
    for 796633 Gaia DR3 RVS stars using stellar labels from GALAH DR4.
File Summary:
--------------------------------------------------------------------------------
 FileName      Lrecl  Records   Explanations
--------------------------------------------------------------------------------
ReadMe            80        .   This file
rvs_gal.dat      431   796633   The Cannon predictions for stellar labels
--------------------------------------------------------------------------------
See also:
    I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022)
Byte-by-byte Description of file: rvs_gal.dat
--------------------------------------------------------------------------------
   Bytes Format Units     Label       Explanations
--------------------------------------------------------------------------------
   1- 19  I19   ---       GaiaDR3     Gaia DR3 source_id
  21- 32  F12.7 ---       GaiaRVSSNR  Signal-to-Noise of RVS spectra
      34  A1    ---       flagCannon  [0/1] Cannon flag (1)
  36- 53 F18.13 K         Teff        Effective temperature
  55- 75 F21.16 K       e_Teff        rms uncertainty on Teff
  77- 95 F19.16 [cm/s2]   logg        Surface gravity
  97-119 E23.15 [cm/s2] e_logg        rms uncertainty on logg
 121-144 E24.16 km/s      vsini       Broadening velocity
 146-164 F19.16 km/s    e_vsini       rms uncertainty on vsini
 166-189 E24.16 [-]       [Fe/H]      Fe abundance
 191-213 E23.15 [-]     e_[Fe/H]      rms uncertainty on [Fe/H]
 215-238 E24.16 [-]       [Ca/Fe]     Ca abundance
 240-262 E23.15 [-]     e_[Ca/Fe]     rms uncertainty on [Ca/Fe]
 264-287 E24.16 [-]       [Ti/Fe]     Ti abundance
 289-311 E23.15 [-]     e_[Ti/Fe]     rms uncertainty on [Ti/Fe]
 313-336 E24.16 [-]       [Si/Fe]     Si abundance
 338-360 E23.15 [-]     e_[Si/Fe]     rms uncertainty on [Si/Fe]
 362-385 E24.16 [-]       [Ni/Fe]     Ni abundance
 387-410 E24.16 [-]     e_[Ni/Fe]     rms uncertainty on [Ni/Fe]
 412-431 F20.16 ---       chisq       Chi2 value of stellar label fitting
--------------------------------------------------------------------------------
Note (1): Cannon Flag as follows:
   0 = Label estimates within the acceptable label space of the training sample
   1 = Label estimates outside the label space of the training sample
--------------------------------------------------------------------------------
Acknowledgements:
    Pradosh Barun Das, pbdrohan(at)gmail.com
(End)                                        Patricia Vannier [CDS]  05-Feb-2025