
Vectorized Spectra Generation Algorithm in
GOBASIC

Luyao Zou

February 27, 2015

1 Summary

As a script language, Matlab is optimized for vector operations, but has
poor for-loop performance. This document describes the details of vectorized
algorithm of spectra generation in GOBASIC program[1]. Both the codes of
the old for-loop algorithm and the current one are listed.

The vectorized algorithm in general can improve the speed of spectra
simulation by about an order of magnitude. If you have better ideas to
improve the algorithm please feel free to contact me at luyao.zou@emory.

edu

2 Old Algorithm: A For-loop Solution

A spectrum for a given fitting component is generated in GOBASIC based
on the function

yyyfit =
∑
m

γm(xxx) (1)

where xxx is the x-data, γ is the Gaussian profile function, Tb is the brightness
temperature, and m stands for a molecular transition listed in the catalog.

In GOBASIC, Tbm is returned by function maxtempcalc.m as a vector,
maxtemp, for a given fitting component. The old program takes this vector,
matches it with the catalog files and simulation parameters, and generates a
spectrum. The old code is listed:

1

luyao.zou@emory.edu
luyao.zou@emory.edu


1 function molsim = molsim(maxtemp,obsfreq,molfreq,fwhm_v,shift_v)

2 c = 299792.458;

3 molsim = zeros(length(obsfreq),1);

4 fwhm = fwhm_v*median(obsfreq)/c;

5 shift = shift_v*median(obsfreq)/c;

6 const = fwhm^2/(4*log(2));

7 for n=1:length(maxtemp)

8 line = maxtemp(n,1)*exp(-(obsfreq-molfreq(n,1)+shift).^2/const);

9 molsim = molsim + line;

10 end

molfreq, taken from the catalog, stores the center frequency of transitions
of the given component. length(molfreq) = length(maxtemp). Though
very simple, this for-loop solution is quite inefficient, as for each evaluation
of a set of parameters during the optimization, thousands of for-loop cycles
need to be executed. To be fair, it usually takes hundreds of thousands of
function evaluations during one optimization of a broadband observational
dataset. So the total numbers of for-loop cycles executed will be huge.

3 Vectorized Algorithm: A Faster Solution

The vectorized algorithm tries to replace the for-loop with a summation of
a set of individual vectors, each representing a Gaussian line-shape of one
transition. In addition, for each individual Gaussian line-shape function, it is
not necessary to calculate the value over the whole GHz-wide observational
frequency window. Most of the values will be so close to zero that they can
be omitted. Therefore, sparse matrix methods can be used to save computing
resources. (In fact, trying to create a full matrix can easily exceed Matlab’s
upper limit of matrix size.) In the current version of GOBASIC (4.3), a 200
x-data points are used as the window for line-shape generation, defined as
variable range in definevars.m. This range is decent for the CSO dataset,
since the frequency step size is 1 MHz and the typical line-width is 10 MHz.
Thus, 201 x-data points stand for a 200 MHz frequency window, which is on
the scale of ±20σ wide, sufficient to create an precise Gaussian line profile.

The equation used to calculate the spectral function is also modified,
according to the suggestion of an anonymous referee. The new function,

2



which is described in the paper, is

yyyfit = f(xxx;NT,∆v, T, voff) =
∑
n

∑
νc

γc(xxx) =
∑
n

∑
νc

ηB
hνc

k

1 − e−τc(xxx)

ehνc/kT − 1
(2)

where

ηB =
θ2

s

θ2
s + θ2

b

(3)

is the beam filling factor (frequency dependent and calculated on the fly);

τc(xxx) =
1

4

√
ln 2

π3

c2

ν2
c ∆ν

NTAulgu

Q(T )
e−Eu/kT

(
ehνc/kT − 1

)
g(xxx) (4)

is the optical depth of transition c; and

g(x) = exp

(
− 4 ln 2(x− νc + νoff)2

∆ν2

)
(5)

is the Gaussian profile.
Since both the beam filling factor and the linewidth and shift in velocity

units are frequency dependent, all these values are calculated on the fly.
As a result, all calculations have been combined into totalsim.m, whereas
molsim.m and maxtempcalc.m are no longer needed (v4.3 and later).

3.1 Generate Indices

The first thing required by this solution, is to have a index matrix marks
out the index range in the x-data to generate the Gaussian. The reason of
making this matrix is also to match up the requirements of Matlab sparse
matrix operations, which will be discussed in the next section. This index
matrix is returned by function linecenter.m:

1 function linecenter_idx = linecenter(molfreq,obsfreq,range)

2 indicies = zeros(1,length(molfreq));

3 for n = 1:length(molfreq)

4 dfreq = abs(obsfreq - molfreq(n));

5 index = find(dfreq == min(dfreq));

6 indicies(1,n) = index(1);

3



7 end

8 range_min = -idivide(int16(range),2,’ceil’);

9 range_max = idivide(int16(range),2,’ceil’);

10 range_matrix = repmat((range_min:range_max)’,1,length(molfreq));

11 linecenter_idx = repmat(indicies,range_max-range_min+1,1) - double(range_matrix);

This function takes three arguments, molfreq, obsfreq, and range.
molfreq is the molecular transition frequency vector extracted from the cat-
alog.

molfreq = [ν1, ν2, ν3, ..., νm]T m transitions

obsfreq is the frequency-x points extracted from the observational data.

obsfreq = [x1, x2, x3, ..., xn]T n x-data points

Line 2 creates a zero column vector in the same length of molfreq.
Line 3–7 is a for-loop, which I did not find a way to get rid of, to return

the line center indices in obsfreq of all νm. This is because the x-vector from
observations has some finite channel width (on the scale of 1 MHz in our CSO
line surveys). It is likely that the line center νm taken from the catalog list
does not match the x-data points. But we can find a closest number as the
starting point of generating Gaussian windows.

Line 4 calculate the difference between xi and νm, dfreq.
Line 5 finds the index of the minimum of dfreq, which is the index of the

x-data point closest to the frequency center νm.
Line 6 stores that index into indicies=[i1, i2, i3, . . . , im].
Line 8–10 creates the Gaussian window cutoff matrix, from -range/2 to

+range/2 replicated by length(molfreq) times.

rrr = range_matrix =



−range/2 −range/2 . . . −range/2
−range/2 + 1 −range/2 + 1 . . . −range/2 + 1

...
...

...
0 0 · · · 0
...

...
...

range/2 range/2 . . . range/2


Line 11 creates the index matrix for the Gaussian windows, centered at

transition frequencies from the catalog. It first replicates the index matrix

4



to match the dimension of range_matrix, and the subtract range_matrix

from it.

iii = repmat(indicies,range_max-range_min+1,1)

=


i1 i2 . . . im
i1 i2 . . . im
...

...
...

i1 i2 . . . im


linecenter_idx = iii− rrr

Now this linecenter_idx is a index matrix which labels the indices in
obsfreq to generate Gaussian profiles for each molecular transition. This
function still uses a for-loop, which may cause thousands of cycles. Nev-
ertheless, once generated, linecenter_idx is returned and hold unchanged
during the whole fitting process. So the for-loop is only executed once, which
is acceptable.

Another line in analysisscript.m defines

1 chwidth = mean(diff(obsfreq));

This line calculate the channel width of an observational data set. It is the
average value of the differences between adjacent x-data points. This is build
upon the assumption that the frequency data are uniformly sampled.

3.2 Generate Gaussian Profile

The function totalsim is used to output a complete spectrum vector for a
given molecular component. It takes linecenter_idx and other arguments.
The code is listed:

1 function totalsim = totalsim(molfreq,obsfreq,aco,agu,eup,lc_idx,chwidth,...

2 sourcesize,dish,lognt,fwhm_v,lntemp,shift_v)

3

4 h = 6.62606957e-34;

5 k = 1.3806488e-23;

6 c = 2.99792458e8;

5



7

8 temp = exp(lntemp);

9 nt = 10^(lognt+4);

10 nu = molfreq*1e6;

11 shift = shift_v*molfreq/c*1e3;

12 fwhm = fwhm_v*molfreq/c*1e3;

13 linecenter = molfreq - shift;

14 q = aco*temp^(3/2);

15 range_len = length(lc_idx(:,1));

16 % tau at line center

17 tau_c = (sqrt(log(2)/pi^3)/4).*(c.^2./(nu.^2)).*nt./q.*agu.*...

18 exp(-eup./(k.*temp)).*(exp(h.*nu./(k.*temp))-1);

19 % calculate beam filling factor if source size is specified

20 if sourcesize ~= 0

21 lambda = c./(linecenter*1e6);

22 % beam size at line center

23 beamsize = (sqrt(-8*log(2)*log(0.1))*lambda/dish*180*3600/pi^2);

24 beamfilling = repmat(sourcesize,length(beamsize),1).^2./...

25 (repmat(sourcesize,length(beamsize),1).^2+beamsize.^2);

26 end

27 linecenter = repmat(linecenter’,range_len,1);

28 fwhm = repmat(fwhm’,range_len,1);

29 shift_idx = repmat(round(shift/chwidth)’,range_len,1);

30 jlabel = lc_idx - shift_idx;

31 ilabel = (1:length(molfreq));

32 ilabel = repmat(ilabel,range_len,1);

33 tau = repmat(tau_c’,range_len,1)./fwhm.*...

34 exp(-4*log(2).*(obsfreq(jlabel)-linecenter).^2./fwhm.^2);

35 % catch if no beam filling correction is specified

36 if sourcesize == 0

37 b = (h.*nu)./(k.*(exp(h.*nu./(k.*temp))-1));

38 else

39 b = (h.*nu)./(k.*(exp(h.*nu./(k.*temp))-1)).*beamfilling;

40 end

41 svalue = repmat(b’,range_len,1).*(1-exp(-tau));

42 lines = sparse(reshape(ilabel,1,[]), reshape(jlabel,1,[]),...

43 reshape(svalue,1,[]), length(molfreq),length(obsfreq));

44 totalsim = full(sum(lines,1))’;

6



First 15 lines define constant and perform on-the-fly conversion of line
centers and shifts from velocity unit into frequency unit.

Line 17 calculate the optical depth vector at the transition center, without
the Gaussian profile

Line 19–26 constructs the beam filling factor matrix. Notice that here
the wavelength of the light is converted from the transition center corrected
by the velocity shift.

Line 27–28 generates line center and line width matrices, range_len×m.
Line 29–30 generates the shifted line-center index matrix, which has the

same number of rows with molfreq, and same number of columns with
lc_idx (range_len). The shift_idx first calculates how much index num-
bers needs to be shifted to count for the shift of line centers. This is a suffi-
ciently close estimation from the ratio of shifted frequency and channel width
of the observational data. chwidth is pre-calculated in analysisscript.n

to be chwidth = mean(diff(obsfreq)). The the index shift is applied to
lc_idx to produce jlabel, which is the used by the following codes to gen-
erate the Gaussian line-profiles.

Line 31–32 generates another index matrix, called ilabel. This is sim-
ply a range_len×m matrix, each column of which is number 1 through
range_len.

Line 33–34 replicates the optical depth vector tau_c, and multiplies it
with the Gaussian profile to generate a τ matrix at each x-data points, of
the same dimensions of other index matrices.

Line 35–40 furthermore corrects for beam filling effect, if necessary.

7



linecenter = ννν ′ =


ν ′1 ν ′2 . . . ν ′m
ν ′1 ν ′2 . . . ν ′m
...

...
...

ν ′1 ν ′2 . . . ν ′m



linewidth = ∆ννν =


∆ν1 ∆ν2 . . . ∆νm
∆ν1 ∆ν2 . . . ∆νm

...
...

...
∆ν1 ∆ν2 . . . ∆νm



beamfilling = ηBηBηB =


ηB(ν ′1) ηB(ν ′2) . . . ηB(ν ′m)
ηB(ν ′1) ηB(ν ′2) . . . ηB(ν ′m)

...
...

...
ηB(ν1)′ ηB(ν ′2) . . . ηB(ν ′m)



obsfreq(jlabel) = xxxselected =


xi1−range/2 xi2−range/2 . . . xim−range/2

...
...

...
xi1 xi2 . . . xim
...

...
...

xi1+range/2 xi2+range/2 . . . xim+range/2



tau = τ(xxxselected) =


τ(xi1 − range/2) τ(xi2 − range/2) . . . τ(xim − range/2)

...
...

...
τ(xi1) τ(xi2) . . . τ(xim)

...
...

...
τ(xi1 + range/2) τ(xi2 + range/2) . . . τ(xim + range/2)


Line 41–43 converts svalue into a sparse matrix, lines, whose size is

equal to length(obsfreq)×length(molfreq).
Line 44 sums up all columns (i.e. all transitions) in lines, and returns a

full-size vector, which is the final spectrum we want.

References

[1] Rad M. L., Zou L., Sanders J. L. and Widicus Weaver S. L., “Global Op-
timization and Broadband Analysis Software for Interstellar Chemistry
(GOBASIC).” Astron. & Astrophys., in revision, 2015

8


	Summary
	Old Algorithm: A For-loop Solution
	Vectorized Algorithm: A Faster Solution
	Generate Indices
	Generate Gaussian Profile


